计及新能源场站调频能力的电力系统最小惯量评估方法

王振浩, 陈诗伦, 葛津铭, 李国庆, 王朝斌, 刘桄志

太阳能学报 ›› 2024, Vol. 45 ›› Issue (8) : 494-502.

PDF(1361 KB)
欢迎访问《太阳能学报》官方网站,今天是
PDF(1361 KB)
太阳能学报 ›› 2024, Vol. 45 ›› Issue (8) : 494-502. DOI: 10.19912/j.0254-0096.tynxb.2023-0540

计及新能源场站调频能力的电力系统最小惯量评估方法

  • 王振浩, 陈诗伦, 葛津铭, 李国庆, 王朝斌, 刘桄志
作者信息 +

MINIMUM INERTIA EVALUATION METHOD OF POWER SYSTEM CONSIDERING FREQUENCY MODULATION CAPABILITY OF NEW ENERGY STATIONS

  • Wang Zhenhao, Chen Shilun, Ge Jinming, Li Guoqing, Wang Chaobin, Liu Guangzhi
Author information +
文章历史 +

摘要

该文提出计及新能源场站调频能力时考虑频率变化率(RoCoF)和频率最低点约束的惯量评估方法。首先在计及RoCoF约束部分,考虑静态负荷电压对频率变化的抑制作用、电流源型虚拟惯量参与调频时对系统不平衡功率的影响和动态频率响应过程中的空间分布特征。其次在计及频率最低点约束部分,提出基于经典平均系统频率(ASF)模型的考虑新能源场站接入和发电机调速系统的通用ASF模型。利用该模型可预测给定扰动下系统到达频率最低点的时间,并求出频率变化的时域表达式从而进行最小惯量评估。用改进的3机9节点和10机39节点系统设置不同扰动类型和扰动大小对于该文所提方法进行仿真分析,进而证明所提方法的准确性和适用性。

Abstract

An inertia evaluation method has been proposed that incorporates the rate of change of frequency(RoCoF)and the constraint of the minimum frequency point, considering the frequency modulation capabilities of new energy stations. The RoCoF constraint section initially takes into account the suppressive effect of static load voltage on frequency fluctuation, the impact of current source virtual inertia on system imbalance power during frequency modulation participation, and the spatial distribution characteristics throughout the dynamic frequency response process. Subsequently, in the part of considering the minimum frequency constraint, a general ASF model based on the classical average system frequency (ASF) model considering the access of new energy stations and generator speed control system is proposed. This model is derived from the classical ASF model, integrated with a low-order general model of the generator speed control system and the general frequency response model of new energy stations. The model enables to predict the time at which the system reaches its lowest frequency under a specific disturbance and provide a time-domain expression of frequency variation to assess the minimum inertia. The enhanced 3-machine 9-node and 10-machine 39-node systems are employed to simulate different disturbance types and sizes for analysis of the proposed method, thereby validating its accuracy and applicability.

关键词

惯量响应 / 新能源 / 平均系统频率模型 / 最小惯量需求

Key words

inertia response / new energy / average system frequency model / minimum inertia requirement

引用本文

导出引用
王振浩, 陈诗伦, 葛津铭, 李国庆, 王朝斌, 刘桄志. 计及新能源场站调频能力的电力系统最小惯量评估方法[J]. 太阳能学报. 2024, 45(8): 494-502 https://doi.org/10.19912/j.0254-0096.tynxb.2023-0540
Wang Zhenhao, Chen Shilun, Ge Jinming, Li Guoqing, Wang Chaobin, Liu Guangzhi. MINIMUM INERTIA EVALUATION METHOD OF POWER SYSTEM CONSIDERING FREQUENCY MODULATION CAPABILITY OF NEW ENERGY STATIONS[J]. Acta Energiae Solaris Sinica. 2024, 45(8): 494-502 https://doi.org/10.19912/j.0254-0096.tynxb.2023-0540
中图分类号: TM73   

参考文献

[1] 舒印彪, 陈国平, 贺静波, 等. 构建以新能源为主体的新型电力系统框架研究[J]. 中国工程科学, 2021, 23(6): 61-69.
SHU Y B, CHEN G P, HE J B, et al.Building a new electric power system based on new energy sources[J]. Strategic study of CAE, 2021, 23(6): 61-69.
[2] KUNDUR P, BALU N J, LAUBY M G.Power system stability and control[M]. New York: McGraw-Hill, 1994.
[3] 孙华东, 许涛, 郭强, 等. 英国“8·9”大停电事故分析及对中国电网的启示[J]. 中国电机工程学报, 2019, 39(21): 6183-6192.
SUN H D, XU T,GUO Q, et al.Analysis on blackout in Great Britain power grid on august 9th, 2019 and its enlightenment to power grid in China[J]. Proceedings of the CSEE, 2019, 39(21): 6183-6192.
[4] 曾繁宏, 张俊勃. 电力系统惯性的时空特性及分析方法[J]. 中国电机工程学报, 2020, 40(1): 50-58, 373
ZENG F H, ZHANG J B.Temporal and spatial characteristics of power system inertia and its analysis method[J]. Proceedings of the CSEE, 2020, 40(1): 50-58, 373
[5] 孙华东, 汤涌, 马世英. 电力系统稳定的定义与分类述评[J]. 电网技术, 2006, 30(17): 31-35.
SUN H D, TANG Y, MA S Y.A commentary on definition and classification of power system stability[J]. Power system technology, 2006, 30(17): 31-35.
[6] 孙华东, 王宝财, 李文锋, 等. 高比例电力电子电力系统频率响应的惯量体系研究[J]. 中国电机工程学报,2020, 40(16): 5179-5192.
SUN H D, WANG B C, LI W F, et al.Research on inertia system of frequency response for power system with high penetration electronics[J]. Proceedings of the CSEE, 2020, 40(16): 5179-5192.
[7] JOHNSON S C,PAPAGEORGIOU D J,MALLAPRAGADA D S, et al.Evaluating rotational inertia as a component of grid reliability with high penetrations of variable renewable energy[J]. Energy, 2019, 180: 258-271.
[8] GU H J,YAN R F, SAHA T K.Minimum synchronous inertia requirement of renewable power systems[J]. IEEE transactions on power systems, 2018, 33(2): 1533-1543.
[9] 文云峰, 林晓煌. 孤岛与并网模式下微电网最低惯量需求评估[J]. 中国电机工程学报, 2021, 41(6): 2040-2053.
WEN Y F, LIN X H.Minimum inertia requirement assessment of microgrids in islanded and grid-connected modes[J]. Proceedings of the CSEE, 2021, 41(6): 2040-2053.
[10] WILSON D, YU J, AL-ASHWAL N, et al.Measuring effective area inertia to determine fast-acting frequency response requirements[J]. International journal of electrical power and energy systems, 2019, 113: 1-8.
[11] 林晓煌, 文云峰, 杨伟峰. 惯量安全域: 概念、 特点及评估方法[J]. 中国电机工程学报, 2021, 41(9): 3065-3079.
LINX H, WEN Y F, YANG W F.Inertia security region: concept, characteristics, and assessment method[J]. Proceedings of the CSEE, 2021, 41(9): 3065-3079.
[12] 易佩, 景志滨, 徐飞, 等. 考虑频率安全约束的电力系统临界惯量计算[J]. 清华大学学报(自然科学版),2022, 62(10): 1721-1729.
YI P, JING Z B, XU F, et al.Calculation of the critical inertia of a power system considering frequency security constraints[J]. Journal of Tsinghua University (science and technology), 2022, 62(10): 1721-1729.
[13] 王宝财, 孙华东, 李文锋, 等. 考虑动态频率约束的电力系统最小惯量评估[J]. 中国电机工程学报, 2022, 42(1): 114-126.
WANG B C, SUN H D, LI W F, et al.Minimum inertia estimation of power system considering dynamic frequency constraints[J]. Proceedings of the CSEE, 2022, 42(1): 114-126.
[14] SHI Q X, LI F X, CUI H T.Analytical method to aggregate multi-machine SFR model with applications in power system dynamic studies[J]. IEEE transactions on power systems, 2018, 33(6): 6355-6367.
[15] 张英敏, 彭泽峰, 彭乔, 等. 预测新能源接入电网受扰后频率最低点的通用ASF模型[J]. 电网技术, 2023, 47(5): 1788-1797.
ZHANG Y M, PENG Z F, PENG Q, et al.Generic ASF model of new-energy-integrated power grid for frequency nadir estimation under disturbance[J]. Power system technology, 2023, 47(5): 1788-1797.
[16] 李孝禄, 王鑫, 方晓敏, 等. 基于滑模控制的光伏系统MPPT控制策略[J]. 太阳能学报,2018, 39(10): 2843-2850.
LI X L, WANG X, FANG X M, et al.MPPT control strategy for photovoltaic system based on sliding mode control[J]. Acta energiae solaris sinica, 2018, 39(10): 2843-2850.
[17] 龚浩岳, 周勤勇, 郭强, 等. 高比例新能源接入场景电力系统频率分析模型改进与应用[J]. 电网技术, 2021,45(12): 4603-4612.
GONG H Y, ZHOU Q Y, GUO Q, et. al. Improvement and application of frequency analysis modules for power system under high proportion of renewable energy situation[J]. Power system technology, 2021, 45(12): 4603-4612.
[18] 王晓东, 李凯凯, 卢奭瑄, 等. 基于VSG的风电机组虚拟惯量控制策略[J]. 太阳能学报,2018, 39(5): 1418-1425.
WANG X D, LI K K, LU S X, et al.Virtual synchronous generator based virtual inertia control strategy of wind turbine[J]. Acta energiae solaris sinica, 2018, 39(5): 1418-1425.
[19] EGIDO I, FERNANDEZ-BERNAL F, CENTENO P, et al.Maximum frequency deviation calculation in small isolated power systems[J]. IEEE transactions on power systems, 2009, 24(4): 1731-1738.
[20] PULGAR-PAINEMAL H, WANG Y J, SILVA-SARAVIA H.On inertia distribution, inter-area oscillations and location of electronically-interfaced resources[J]. IEEE transactions on power systems, 2018, 33(1): 995-1003.
[21] 王博, 杨德友, 蔡国伟. 高比例新能源接入下电力系统惯量相关问题研究综述[J]. 电网技术, 2020, 44(8):2998-3006.
WANG B, YANG D Y, CAI G W.Review of research on power system inertia related issues in the context of high penetration of renewable power generation[J]. Power system technology, 2020, 44(8): 2998-3006.
[22] 任凯奇, 张东英, 黄越辉, 等. 基于新能源出力比例的大规模系统惯量估计[J].电网技术, 2022, 46(4): 1307-1315.
REN K Q, ZHANG D Y, HUANG Y H, et al.Large-scale system inertia estimation based on new energy output ratio[J]. Power system technology, 2022, 46(4): 1307-1315.
[23] CHAN M L, DUNLOP R D, SCHWEPPE F. Dynamic equivalents for average system frequency behavior following major distribances[J]. IEEE transactions on power apparatus and systems, 1972 , PAS-91(4): 1637-1642.

基金

国家自然科学基金(U2066208)

PDF(1361 KB)

Accesses

Citation

Detail

段落导航
相关文章

/