基于紧致差分格式的风电叶片抗弯刚度分布辨识

马怡, 周爱国, 施金磊, 赵世文, 朱玉田

太阳能学报 ›› 2024, Vol. 45 ›› Issue (8) : 523-528.

PDF(1141 KB)
欢迎访问《太阳能学报》官方网站,今天是
PDF(1141 KB)
太阳能学报 ›› 2024, Vol. 45 ›› Issue (8) : 523-528. DOI: 10.19912/j.0254-0096.tynxb.2023-0545

基于紧致差分格式的风电叶片抗弯刚度分布辨识

  • 马怡, 周爱国, 施金磊, 赵世文, 朱玉田
作者信息 +

IDENTIFICATION OF WIND TURBINE BLADE ANTI-BENDING STIFFNESS BASED ON COMPACT DIFFERENCE SCHEME

  • Ma Yi, Zhou Aiguo, Shi Jinlei, Zhao Shiwen, Zhu Yutian
Author information +
文章历史 +

摘要

针对叶片抗弯刚度分布难以辨识的实际问题,提出一种基于单点静载挠度拟合和紧致差分格式的叶片抗弯刚度辨识方法,建立叶片静态标定工况弯曲变形数学模型,进一步推导出各截面挠度和抗弯刚度表达式。通过对多支不同型号叶片的分析结果表明,叶中部分抗弯刚度辨识误差均小于5%,验证了该方法的有效性。

Abstract

Identifying the distribution of wind turbin blade flexural stiffness in practical scenarios poses a significant challenge. To address this issue, this study proposes a novel blade flexural stiffness identification method based on two key components: single point static load deflection fitting and a compact finite difference scheme. By establishing a comprehensive mathematical model that captures blade bending deformation under static load calibration conditions, this study derives precise expressions for deflection and anti-bending stiffness for each section of the blade. Extensive analysis on various blade types reveals that the anti-bending stiffness identification error in the midsection of the blade remains below 5%, thus validating the effectiveness of the proposed method.

关键词

风电叶片 / 抗弯刚度 / 曲线拟合 / 标定 / 紧致差分格式

Key words

wind turbine blades / anti-bending stiffness / curve fitting / calibration / compact difference scheme

引用本文

导出引用
马怡, 周爱国, 施金磊, 赵世文, 朱玉田. 基于紧致差分格式的风电叶片抗弯刚度分布辨识[J]. 太阳能学报. 2024, 45(8): 523-528 https://doi.org/10.19912/j.0254-0096.tynxb.2023-0545
Ma Yi, Zhou Aiguo, Shi Jinlei, Zhao Shiwen, Zhu Yutian. IDENTIFICATION OF WIND TURBINE BLADE ANTI-BENDING STIFFNESS BASED ON COMPACT DIFFERENCE SCHEME[J]. Acta Energiae Solaris Sinica. 2024, 45(8): 523-528 https://doi.org/10.19912/j.0254-0096.tynxb.2023-0545
中图分类号: TM315   

参考文献

[1] IEC 61400-5:2020, Wind energy generation systems-part 5: wind turbine blades[S].
[2] IEC 61400-23:2014, Wind turbines-part 23:Full-scale structural testing of rotor blades[S].
[3] 张颜明, 李国勇, 王艳, 等. 全尺寸叶片变形一致性测试技术研究[J]. 风能, 2022(1): 68-71.
ZHANG Y M, LI G Y, WANG Y, et al.Research on deformation consistency testing technology of full-scale blades[J]. Wind energy, 2022(1): 68-71.
[4] 靳交通, 刘力根, 邓航, 等. 基于有限差分法和有限元法的大型风电叶片刚度计算[J]. 机械设计与研究, 2012, 28(6): 83-85.
JIN J T, LIU L G, DENG H, et al.Stiffness calculation of large-scale wind turbine blade based on the finite difference method and the finite element method[J]. Machine design & research, 2012, 28(6): 83-85.
[5] 靳交通, 梁鹏程, 曾竟成, 等. 复合材料风电叶片有限元刚度分析[J]. 武汉理工大学学报, 2009, 31(21): 133-136.
JIN J T, LIANG P C, ZENG J C, et al.Finite element analysis for composite material wind rotor blade stiffness[J]. Journal of Wuhan University of Technology, 2009, 31(21): 133-136.
[6] IEC 61400-23:2001, wind turbines-part 23: full-scale structural testing of rotor blades[S].
[7] 傅程, 张方慧. 风轮叶片疲劳试验加载设计[J]. 中国机械工程, 2018, 29(6): 743-747.
FU C, ZHANG F H.Loading design of wind turbine blade fatigue tests[J]. China mechanical engineering, 2018, 29(6): 743-747.
[8] 白学宗, 安宗文, 侯运丰, 等. 低速冲击载荷下的风电叶片刚度退化规律[J]. 太阳能学报, 2022, 43(1): 132-139.
BAI X Z, AN Z W, HOU Y F, et al.Stiffness degradation rule of wind turbine blade under low-velocity impact load[J]. Acta energiae solaris sinica, 2022, 43(1): 132-139.
[9] 白学宗, 安宗文, 侯运丰, 等. 风电叶片刚度检测值和退化速率的温度效应[J]. 太阳能学报, 2021, 42(12): 245-252.
BAI X Z, AN Z W, HOU Y F, et al.Temperature effect of stiffness detection value and degradation rate of wind turbine blades[J]. Acta energiae solaris sinica, 2021, 42(12): 245-252.
[10] JUNG S N, LAU B H.Determination of HART Ⅰ blade structural properties by laboratory testing[R]. NASA/CR-2012-216039, 2012.
[11] CHANDRA R, STEMPLE A D, CHOPRA I.Thin-walled composite beams under bending, torsional, and extensional loads[J]. Journal of aircraft, 1990, 27(7): 619-626.
[12] OGORKIEWICZ R M, MUCCI P E R. Testing of fibre-plastics composites in three-point bending[J]. Composites, 1971, 2(3): 139-145.
[13] PFLUMM T, GAUGELHOFER L, HEUSCHNEIDER V, et al.Hybrid experimental measurement of sectional stiffness properties of the merit rotor blade with digital image correlation[C]//47th European Rotorcraft Forum, United Kingdom,7-9th September, 2021.
[14] GRIFFITH D T, PAQUETTE J A, CARNE T G.Development of validated blade structural models[C]//46th AIAA Aerospace Sciences Meeting and Exhibit. Reno, Nevada, USA, 2008.
[15] GRIFFITH D T, CARNE T G.Experimental modal analysis of 9-meter research-sized wind turbine blades[M]. New: Springer New York, 2011: 1-14.
[16] IEC 61400-13:2015, Wind turbines-Part 13: Measurement of mechanical loads[S].
[17] 乌建中. 风电叶片全尺寸结构测试理论基础、系统设计和试验方法[M]. 上海: 同济大学出版社, 2021.
WU J Z.Full-scale structural testing theoretical basis, system design and experimental method of wind turbine blades[M]. Shanghai: Tongji University Press, 2021.
[18] 王汉权, 成蓉华. 微分方程数值方法: 有限差分法[M]. 北京: 科学出版社, 2020.
WANG H Q, CHENG R H.Numerical method of differential equation: finite difference method[M]. Beijing: Science Press, 2020.
[19] LELE S K.Compact finite difference schemes with spectral-like resolution[J]. Journal of computational physics, 1992, 103(1): 16-42.
[20] POST N. Fatigue test design: scenarios for biaxial fatigue testing of a 60-meter wind turbine blade[R]. NREL/TP-5000-65227, 1271941, 2016: NREL/TP-5000-65227, 1271941.

PDF(1141 KB)

Accesses

Citation

Detail

段落导航
相关文章

/