可再生能源电解制氢宽范围运行控制策略

夏杨红, 胡致远, 韦巍, 赵波, 章雷其

太阳能学报 ›› 2024, Vol. 45 ›› Issue (8) : 34-43.

PDF(2213 KB)
欢迎访问《太阳能学报》官方网站,今天是
PDF(2213 KB)
太阳能学报 ›› 2024, Vol. 45 ›› Issue (8) : 34-43. DOI: 10.19912/j.0254-0096.tynxb.2023-0546

可再生能源电解制氢宽范围运行控制策略

  • 夏杨红1,2, 胡致远1,2, 韦巍1,2, 赵波3, 章雷其3
作者信息 +

WIDE RANGE OPERATION CONTROL STRATEGY FOR ELECTROLYSIS HYDROGEN PRODUCTION BASED ON RENEWABLE ENERGY

  • Xia Yanghong1,2, Hu Zhiyuan1,2, Wei Wei1,2, Zhao Bo3, Zhang Leiqi3
Author information +
文章历史 +

摘要

首先分析碱液电解制氢低载低效率的机理,发现通过重塑激励电场可有效提升系统低载效率。基于此,提出多模态自寻优(MMSO)电解制氢变流技术及其对应的变流器原理样机,并将所提控制策略应用于光伏直驱的2 Nm3/h碱液电解槽(约10 kW)。发现相比于传统直流供电策略,所提策略具有以下优势:1)低载工况下,MMSO电解制氢变流控制策略最大效率提升超过两倍;2)效率≥50%约束下,系统运行范围从30%~100%扩大至10%~100%;3)碱液电解槽可全范围跟踪可再生能源出力。

Abstract

This paper analyzes the inefficiency mechanism of low-load alkaline water electrolyzers(AWEs). It is found that through modifying the excitation electric field, the low-load performance of AWEs can be greatly enhanced. Based on this, a multi-modal self-optimization (MMSO) control strategy and the corresponding prototype converter are proposed. The effectiveness of the proposed method is verified by a 2 Nm3/h AWE (about 10 kW) directly driven by PV arrays. Experimental results show that compared to the conventional DC power supply, 1) the maximum efficiency improvement can exceed two times, 2) under the constraint of efficiency≥50%, the system operation is enhanced from 30%-100% to 10%-100% of rated load; 3) the AWE can follow the fluctuating PV power well.

关键词

可再生能源 / 制氢 / 电解槽 / 能量效率 / 波动制氢 / 宽范围运行

Key words

renewable energy / hydrogen production / electrolytic cells / energy efficiency / fluctuating hydrogen production / wide operation range

引用本文

导出引用
夏杨红, 胡致远, 韦巍, 赵波, 章雷其. 可再生能源电解制氢宽范围运行控制策略[J]. 太阳能学报. 2024, 45(8): 34-43 https://doi.org/10.19912/j.0254-0096.tynxb.2023-0546
Xia Yanghong, Hu Zhiyuan, Wei Wei, Zhao Bo, Zhang Leiqi. WIDE RANGE OPERATION CONTROL STRATEGY FOR ELECTROLYSIS HYDROGEN PRODUCTION BASED ON RENEWABLE ENERGY[J]. Acta Energiae Solaris Sinica. 2024, 45(8): 34-43 https://doi.org/10.19912/j.0254-0096.tynxb.2023-0546
中图分类号: TK91   

参考文献

[1] 李亮荣, 彭建, 付兵, 等. 碳中和愿景下绿色制氢技术发展趋势及应用前景分析[J]. 太阳能学报, 2022, 43(6): 508-520.
LI L R, PENG J, FU B, et al.Development trend and application prospect of green hydrogen production technologies under carbon neutrality vision[J]. Acta energiae solaris sinica, 2022, 43(6): 508-520.
[2] 张诚, 檀志恒, 晁怀颇. “双碳” 背景下数据中心氢能应用的可行性研究[J]. 太阳能学报, 2022, 43(6): 327-334.
ZHANG C, TAN Z H, CHAO H P.Feasibility study of hydrogen energy application on data center under “carbon peaking and neutralization” background[J]. Acta energiae solaris sinica, 2022, 43(6): 327-334.
[3] 谢小荣, 贺静波, 毛航银, 等. “双高” 电力系统稳定性的新问题及分类探讨[J]. 中国电机工程学报, 2021, 41(2): 461-475.
XIE X R, HE J B, MAO H Y, et al.New issues and classification of power system stability with high shares of renewables and power electronics[J]. Proceedings of the CSEE, 2021, 41(2): 461-475.
[4] 孙元章, 徐箭, 廖思阳, 等. 提升新型电力系统调频能力的受控负荷阻尼因子控制器[J]. 中国电机工程学报, 2023, 43(3): 868-878.
SUN Y Z, XU J, LIAO S Y, et al.Controlled load/frequency response to substantially increase frequency regulation capability for power system with high penetration renewable energy[J]. Proceedings of the CSEE, 2023, 43(3): 868-878.
[5] DAEHN K, BASUHI R, GREGORY J, et al.Innovations to decarbonize materials industries[J]. Nature reviews materials, 2022, 7: 275-294.
[6] MA Y, WANG X R, LI T, et al.Hydrogen and ethanol: production, storage, and transportation[J]. International journal of hydrogen energy, 2021, 46(54): 27330-27348.
[7] 郑博, 白章, 袁宇, 等. 多类型电解协同的风光互补制氢系统与容量优化[J]. 中国电机工程学报, 2022, 42(23): 8486-8496.
ZHENG B, BAI Z, YUAN Y, et al.Hydrogen production system and capacity optimization based on synergistic operation with multi-type electrolyzers under wind-solar power[J]. Proceedings of the CSEE, 2022, 42(23): 8486-8496.
[8] URSUA A, GANDIA L M, SANCHIS P.Hydrogen production from water electrolysis: current status and future trends[J]. Proceedings of the IEEE, 2012, 100(2): 410-426.
[9] AMORES E, RODRÍGUEZ J, CARRERAS C. Influence of operation parameters in the modeling of alkaline water electrolyzers for hydrogen production[J]. International journal of hydrogen energy, 2014, 39(25): 13063-13078.
[10] ZENG K, ZHANG D K.Recent progress in alkaline water electrolysis for hydrogen production and applications[J]. Progress in energy and combustion science, 2010, 36(3): 307-326.
[11] HAUG P, KREITZ B, KOJ M, et al.Process modelling of an alkaline water electrolyzer[J]. International journal of hydrogen energy, 2017, 42(24): 15689-15707.
[12] QI R M, GAO X P, LIN J, et al.Pressure control strategy to extend the loading range of an alkaline electrolysis system[J]. International journal of hydrogen energy, 2021, 46(73): 35997-36011.
[13] LI D G, PARK E J, ZHU W L, et al.Highly quaternized polystyrene ionomers for high performance anion exchange membrane water electrolysers[J]. Nature energy, 2020, 5: 378-385.
[14] HICKNER M A, HERRING A M, COUGHLIN E B.Anion exchange membranes: current status and moving forward[J]. Journal of polymer science part B: polymer physics, 2013, 51(24): 1727-1735.
[15] ROCHA F, DE RADIGUÈS Q, THUNIS G, et al. Pulsed water electrolysis: a review[J]. Electrochimica acta, 2021, 377: 138052.
[16] MONK N, WATSON S.Review of pulsed power for efficient hydrogen production[J]. International journal of hydrogen energy, 2016, 41(19): 7782-7791.
[17] LIN M Y, HOURNG L W.Effects of magnetic field and pulse potential on hydrogen production via water electrolysis[J]. International journal of energy research, 2014, 38(1): 106-116.
[18] KOPONEN J, RUUSKANEN V, KOSONEN A, et al.Effect of converter topology on the specific energy consumption of alkaline water electrolyzers[J]. IEEE transactions on power electronics, 2019, 34(7): 6171-6182.
[19] GUO X Q, ZHANG S Q, LIU Z G, et al.A new multi-mode fault-tolerant operation control strategy of multiphase stacked interleaved Buck converter for green hydrogen production[J]. International journal of hydrogen energy, 2022, 47(71): 30359-30370.
[20] GUILBERT D, SORBERA D, VITALE G.A stacked interleaved DC-DC buck converter for proton exchange membrane electrolyzer applications: design and experimental validation[J]. International journal of hydrogen energy, 2020, 45(1): 64-79.
[21] GUIDA V, GUILBERT D, VITALE G, et al.Design and realization of a stacked interleaved DC-DC step-down converter for PEM water electrolysis with improved current control[J]. Fuel cells, 2020, 20(3): 307-315.
[22] 周京华, 孟祥飞, 陈亚爱, 等. 基于新能源发电的电解水制氢直流电源研究[J]. 太阳能学报, 2022, 43(6): 389-397.
ZHOU J H, MENG X F, CHEN Y A, et al.Research on dc power supply for hydrogen production from electrolytic water based on new energy generation[J]. Acta energiae solaris sinica, 2022, 43(6): 389-397.
[23] RODRIGUEZ J R, PONTT J, SILVA C, et al.Large current rectifiers: state of the art and future trends[J]. IEEE transactions on industrial electronics, 2005, 52(3): 738-746.
[24] CHEN M X, CHOU S F, BLAABJERG F, et al.Overview of power electronic converter topologies enabling large-scale hydrogen production via water electrolysis[J]. Applied sciences, 2022, 12(4): 1906.
[25] MENG X, CHEN M L, HE M Z, et al.A novel high power hybrid rectifier with low cost and high grid current quality for improved efficiency of electrolytic hydrogen production[J]. IEEE transactions on power electronics, 2022, 37(4): 3763-3768.
[26] 胡敏, 何湘宁. 脉冲电源印染污水处理的双电层电容效应分析[J]. 电工技术学报, 2007, 22(11): 130-134.
HU M, HE X N.Analysis on electric double layer of dye wastewater purified by electrocoagulation with pulsed power supply[J]. Transactions of China Electrotechnical Society, 2007, 22(11): 130-134.
[27] HITZ C, LASIA A.Determination of the kinetics of the hydrogen evolution reaction by the galvanostatic step technique[J]. Journal of electroanalytical chemistry, 2002, 532(1/2): 133-140.

基金

国家重点研发计划(2020YFB1506800); 国网科技项目(52110421005H); 浙江省“领雁”计划(2022C01161)

PDF(2213 KB)

Accesses

Citation

Detail

段落导航
相关文章

/