基于载氮体氢化与再生的化学链合成氨技术及展望

王思珺, 巩峰, 付恩康, 肖睿

太阳能学报 ›› 2024, Vol. 45 ›› Issue (8) : 44-53.

PDF(2515 KB)
欢迎访问《太阳能学报》官方网站,今天是
PDF(2515 KB)
太阳能学报 ›› 2024, Vol. 45 ›› Issue (8) : 44-53. DOI: 10.19912/j.0254-0096.tynxb.2023-0547

基于载氮体氢化与再生的化学链合成氨技术及展望

  • 王思珺, 巩峰, 付恩康, 肖睿
作者信息 +

TECHNOLOGY AND PROSPECT OF CHEMICAL LOOPING AMMONIA SYNTHESIS BASED ON HYDROGENATION AND REGENERATION OF NITROGEN CARRIERS

  • Wang Sijun, Gong Feng, Fu Enkang, Xiao Rui
Author information +
文章历史 +

摘要

综述基于载氮体氢化与再生的化学链合成氨研究现状,讨论制约化学链速率的关键因素,并提出调控和增强载氮体性能的策略。总结载氮体的制备方法,从应用的角度评估载氮体性能调控的目标,以期为载氮体介导的化学链合成氨研究提供指导,促进基础研究向工业技术的转化。

Abstract

The present article reviews the advances of chemical looping ammonia synthesis(CLAS) based on hydrogenation and regeneration of nitrogen carriers. The key factors in challenging the ammonia production as well as the strategies for enhanced nitrogen carriers performance are proposed. The preparation methods of nitrides are overviewed, and the nitrogen carrier performance control is evaluated objectively, in order to provide guidance for nitrogen carrier mediated chemical chain synthesis of ammonia and promote the transformation of basic research into industrial technology.

关键词

/ 可再生能源 / 氢能 / 载氮体 / 化学链

Key words

ammonia / renewable energy / hydrogen energy / nitrogen carrier / chemical chain

引用本文

导出引用
王思珺, 巩峰, 付恩康, 肖睿. 基于载氮体氢化与再生的化学链合成氨技术及展望[J]. 太阳能学报. 2024, 45(8): 44-53 https://doi.org/10.19912/j.0254-0096.tynxb.2023-0547
Wang Sijun, Gong Feng, Fu Enkang, Xiao Rui. TECHNOLOGY AND PROSPECT OF CHEMICAL LOOPING AMMONIA SYNTHESIS BASED ON HYDROGENATION AND REGENERATION OF NITROGEN CARRIERS[J]. Acta Energiae Solaris Sinica. 2024, 45(8): 44-53 https://doi.org/10.19912/j.0254-0096.tynxb.2023-0547
中图分类号: TK11+4    TK91   

参考文献

[1] AFIF A, RADENAHMAD N, CHEOK Q, et al.Ammonia-fed fuel cells: a comprehensive review[J]. Renewable and sustainable energy reviews, 2016, 60: 822-835.
[2] 刘峻, 赵汪, 高学强, 等. 全球加氢站产业、技术及标准进展综述[J]. 太阳能学报, 2022, 43(6): 362-372.
LIU J, ZHAO W, GAO X Q, et al.Review on advances in industry, technology, and standard of global hydrogen refuelling stations[J]. Acta energiae solaris sinica, 2022, 43(6): 362-372.
[3] 刘化章. 合成氨工业节能减排的分析[J]. 化工进展, 2011, 30(6): 1147-1157.
LIU H Z.Analysis of energy saving in ammonia synthesis industry[J]. Chemical industry and engineering progress, 2011, 30(6): 1147-1157.
[4] WANG L, XIA M K, WANG H, et al.Greening ammonia toward the solar ammonia refinery[J]. Joule, 2018, 2(6): 1055-1074.
[5] LIU H Z.Ammonia synthesis catalyst 100 years: practice, enlightenment and challenge[J]. Chinese journal of catalysis, 2014, 35(10): 1619-1640.
[6] 冯圣, 高文波, 曹湖军, 等. 化学链合成氨研究进展[J]. 化学学报, 2020, 78(9): 916-927.
FENG S,CAO W B, CAO H J, et al.Advances in the chemical looping ammonia synthesis[J]. Acta chimica sinica, 2020, 78(9): 916-927.
[7] 孙龙林, 方益成, 李飞. 可再生能源制氢系统制氢电源研究[J]. 太阳能, 2022(4): 133-139.
SUN L L, FANG Y C, LI F.Research on hydrogen production power supply of renewable energy hydrogen production system[J]. Solar energy, 2022(4): 133-139.
[8] 周京华, 孟祥飞, 陈亚爱, 等. 基于新能源发电的电解水制氢直流电源研究[J]. 太阳能学报, 2022, 43(6): 389-397.
ZHOU J H, MENG X F, CHEN Y A, et al.Research on DC power supply for hydrogen production from electrolytic water based on new energy generation[J]. Acta energiae solaris sinica, 2022, 43(6): 389-397.
[9] RAFIQUL I, WEBER C, LEHMANN B, et al.Energy efficiency improvements in ammonia production:perspectives and uncertainties[J]. Energy, 2005, 30(13): 2487-2504.
[10] 邓卫, 裴玮, 孔力, 等. 基于多端直流的可再生能源制氢系统运行控制[J]. 太阳能学报, 2022, 43(3): 27-35.
DENG W, PEI W, KONG L, et al.Operation control of renewable energy/hydrogen production system based on multi-terminal DC[J]. Acta energiae solaris sinica, 2022, 43(3): 27-35.
[11] 栾天翔, 赵维维. 新能源制氢技术发展现状及研究进展综述[J]. 石化技术, 2022, 29(8): 153-154.
LUAN T X, ZHAO W W.Review on the development status and research progress of hydrogen production technology from new energy sources[J]. Petrochemical industry technology, 2022, 29(8): 153-154.
[12] GAO W B, GUO J P, WANG P K, et al.Production of ammonia via a chemical looping process based on metal imides as nitrogen carriers[J]. Nature energy, 2018, 3: 1067-1075.
[13] FRANK A R.On the utilisation of the atmospheric nitrogen in the production of calcium cyanamide, and its use in agriculture and chemistry[J]. Transactions of the Faraday Society, 1908, 4(10): 99-114.
[14] MICHALSKY R, PFROMM P H.Chromium as reactant for solar thermochemical synthesis of ammonia from steam, nitrogen, and biomass at atmospheric pressure[J]. Solar energy, 2011, 85(11): 2642-2654.
[15] HEIDLAGE M G, KEZAR E A, SNOW K C, et al.Thermochemical synthesis of ammonia and syngas from natural gas at atmospheric pressure[J]. Industrial & engineering chemistry research, 2017, 56(47): 14014-14024.
[16] WU Y, GAO Y, ZHANG Q, et al.Promising zirconia-mixed Al-based nitrogen carriers for chemical looping of NH3: reduced NH3 decomposition and improved NH3 yield[J]. Fuel, 2020, 264: 116821.
[17] GAO Y, WU Y, ZHANG Q, et al.N-desorption or NH3 generation of TiO2-loaded Al-based nitrogen carrier during chemical looping ammonia generation technology[J]. International journal of hydrogen energy, 2018, 43(34): 16589-16597.
[18] LAI Q H, CAI T Y, TSANG S C E, et al. Chemical looping based ammonia production-a promising pathway for production of the noncarbon fuel[J]. Science bulletin, 2022, 67(20): 2124-2138.
[19] FENG S, GAO W B, WANG Q R, et al.A multi-functional composite nitrogen carrier for ammonia production via a chemical looping route[J]. Journal of materials chemistry A, 2021, 9(2): 1039-1047.
[20] YE D P, TSANG S C E. Prospects and challenges of green ammonia synthesis[J]. Nature synthesis, 2023, 2: 612-623.
[21] 祝荣, 任永峰, 孟庆天, 等. 基于合作博弈的综合能源系统电-热-气协同优化运行策略[J]. 太阳能学报, 2022, 43(4): 20-29.
ZHU R, REN Y F, MENG Q T, et al.Electricity-heat-gas cooperative optimal operation strategy of integrated energy system based on cooperative game[J]. Acta energiae solaris sinica, 2022, 43(4): 20-29.
[22] 赵坤, 何方, 黄振, 等. 甲烷化学链重整制备合成气技术中的钙钛矿型载氧体制备及动力学特性[J]. 太阳能学报, 2018, 39(2): 420-427.
ZHAO K, HE F, HUANG Z, et al.Preparation and dynamics property of perovskite-type oxygenates prepared by methane chemical chain reforming for syngas production[J]. Acta energiae solaris sinica, 2018, 39(2): 420-427.
[23] JENNINGS J R.Catalytic ammonia synthesis: fundamentals and practice[M]. New York: Plenum Press, 1991
[24] HABER F, VAN OORDT G.Über die Bildung von Ammoniak den Elementen[J]. Zeitschrift für anorganische chemie, 1905, 44(1): 341-378.
[25] GUO J P, CHEN P.Ammonia history in the making[J]. Nature catalysis, 2021, 4: 734-735.
[26] 郭建平, 陈萍. 多相化学合成氨研究进展[J]. 科学通报, 2019, 64(11): 1114-1128.
GUO J P, CHEN P.Recent progress in heterogeneous ammonia synthesis[J]. Chinese science bulletin, 2019, 64(11): 1114-1128.
[27] 陈昆峰, 胡乾宇, 刘锋, 等. 多尺度晶体材料的原位表征技术与计算模拟研究进展[J]. 无机材料学报, 2023, 38(3): 256-269.
CHEN K F, HU Q Y, LIU F, et al.Multi-scale crystallization materials: advances in in situ characterization techniques and computational simulations[J]. Journal of inorganic materials, 2023, 38(3): 256-269.
[28] 吴烨, 张权, 冯鸣谦, 等. 铝基载氮体在煤化学链制氨过程中的吸氮和释氮行为[J]. 石油学报(石油加工), 2020, 36(6): 1379-1388.
WU Y, ZHANG Q, FENG M Q, et al.N-adsorption/desorption performance of Al-based N-carrier during chemical looping ammonia generation[J]. Acta petrolei sinica (petroleum processing section), 2020, 36(6): 1379-1388.
[29] MICHALSKY R, AVRAM A M, PETERSON B A, et al.Chemical looping of metal nitride catalysts: low-pressure ammonia synthesis for energy storage[J]. Chemical science, 2015, 6(7): 3965-3974.
[30] ALEXANDER A M, HARGREAVES J S J, MITCHELL C. The reduction of various nitrides under hydrogen: Ni3N, Cu3N, Zn3N2 and Ta3N5[J]. Topics in catalysis, 2012, 55(14): 1046-1053.
[31] LAASSIRI S, ZEINALIPOUR-YAZDI C D, CATLOW C R A, et al. Nitrogen transfer properties in tantalum nitride based materials[J]. Catalysis today, 2017, 286: 147-154.
[32] ALEXANDER A M, HARGREAVES J S J, MITCHELL C. The denitridation of nitrides of iron, cobalt and rhenium under hydrogen[J]. Topics in catalysis, 2013, 56(18): 1963-1969.
[33] YANG S, ZHANG T, YANG Y Y, et al.Molybdenum-based nitrogen carrier for ammonia production via a chemical looping route[J]. Applied catalysis B: environmental, 2022, 312: 121404.
[34] HUNTER S M, GREGORY D H, HARGREAVES J S J, et al. A study of 15N/14N isotopic exchange over cobalt molybdenum nitrides[J]. ACS catalysis, 2013, 3(8): 1719-1725.
[35] GREGORY D H, HARGREAVES J S J, HUNTER S M. On the regeneration of Co3Mo3N from Co6Mo6N with N2[J]. Catalysis letters, 2011, 141(1): 22-26.
[36] HUNTER S M, MCKAY D, SMITH R I, et al.Topotactic nitrogen transfer: structural transformation in cobalt molybdenum nitrides[J]. Chemistry of materials, 2010, 22(9): 2898-2907.
[37] HELLMAN A, HONKALA K, REMEDIAKIS I N, et al.Insights into ammonia synthesis from first-principles[J]. Surface science, 2006, 600(18): 4264-4268.
[38] ZEINALIPOUR-YAZDI C D, HARGREAVES J S J, LAASSIRI S, et al. The integration of experiment and computational modelling in heterogeneously catalysed ammonia synthesis over metal nitrides[J]. Physical chemistry chemical physics, 2018, 20(34): 21803-21808.
[39] ZEINALIPOUR-YAZDI C D, HARGREAVES J S J, CATLOW C R A. Nitrogen activation in a mars-van Krevelen mechanism for ammonia synthesis on Co3Mo3N[J]. The journal of physical chemistry C, 2015, 119(51): 28368-28376.
[40] DAISLEY A, HARGREAVES J S J. Metal nitrides, the Mars-van Krevelen mechanism and heterogeneously catalysed ammonia synthesis[J]. Catalysis today, 2023, 423: 113874.
[41] 吴烨, 冯鸣谦, 方婧, 等. 化学链合成氨技术研究进展及展望[J]. 洁净煤技术, 2021, 27(2): 92-106.
WU Y, FENG M Q, FANG J, et al.Research progress and prospect of chemical looping ammonia synthesis technology[J]. Clean coal technology, 2021, 27(2): 92-106.
[42] MEDFORD A J, VOJVODIC A, HUMMELSHØJ J S, et al. From the Sabatier principle to a predictive theory of transition-metal heterogeneous catalysis[J]. Journal of catalysis, 2015, 328: 36-42.
[43] WANG Q R, GUO J P, CHEN P.Recent progress towards mild-condition ammonia synthesis[J]. Journal of energy chemistry, 2019, 36: 25-36.
[44] LAASSIRI S, ZEINALIPOUR-YAZDI C D, CATLOW C R A, et al. The potential of manganese nitride based materials as nitrogen transfer reagents for nitrogen chemical looping[J]. Applied catalysis B: environmental, 2018, 223: 60-66.
[45] SHAN N N, CHIKAN V, PFROMM P, et al.Fe and Ni dopants facilitating ammonia synthesis on Mn4N and mechanistic insights from first-principles methods[J]. The journal of physical chemistry C, 2018, 122(11): 6109-6116.
[46] SHAN N N, HUANG C R, LEE R T, et al.Manipulating the geometric and electronic structures of manganese nitrides for ammonia synthesis[J]. ChemCatChem, 2020, 12(8): 2233-2244.
[47] CAIRNS A G, GALLAGHER J G, HARGREAVES J S J, et al. The effect of low levels of dopants upon the formation and properties of beta-phase molybdenum nitride[J]. Journal of solid state chemistry, 2010, 183(3): 613-619.
[48] YAN H X, GAO W B, WANG Q R, et al.Lithium palladium hydride promotes chemical looping ammonia synthesis mediated by lithium imide and hydride[J]. The journal of physical chemistry C, 2021, 125(12): 6716-6722.
[49] GAO W B, GUO J P, CHEN P.Hydrides, amides and imides mediated ammonia synthesis and decomposition[J]. Chinese journal of chemistry, 2019, 37(5): 442-451.
[50] GOTO Y, DAISLEY A, HARGREAVES J S J. Towards anti-perovskite nitrides as potential nitrogen storage materials for chemical looping ammonia production: reduction of Co3ZnN, Ni3ZnN, Co3InN and Ni3InN under hydrogen[J]. Catalysis today, 2021, 364: 196-201.
[51] DAISLEY A, HARGREAVES J S J. The role of interstitial species upon the ammonia synthesis activity of ternary Fe-Mo-C(N) and Ni-Mo-C(N) phases[J]. Journal of energy chemistry, 2019, 39: 170-175.
[52] WANG B Y, YIN X L, WANG P, et al.Chemical looping ammonia synthesis at atmospheric pressure benefiting from synergistic effect of Mn- and Fe-based nitrogen carriers[J]. International journal of hydrogen energy, 2023, 48(7): 2705-2717.
[53] YAMAGUCHI T, SHINZATO K, YAMAMOTO K, et al.Pseudo catalytic ammonia synthesis by lithium-tin alloy[J]. International journal of hydrogen energy, 2020, 45(11): 6806-6812.
[54] SHINZATO K, TAGAWA K, TSUNEMATSU K, et al.Systematic study on nitrogen dissociation and ammonia synthesis by lithium and group 14 element alloys[J]. ACS applied energy materials, 2022, 5(4): 4765-4773.
[55] GUAN Y Q, ZHANG W J, WANG Q R, et al.Barium chromium nitride-hydride for ammonia synthesis[J]. Chem catalysis, 2021, 1(5): 1042-1054.
[56] GAO W B, WANG R Z, FENG S, et al.Thermodynamic and kinetic considerations of nitrogen carriers for chemical looping ammonia synthesis[J]. Discover chemical engineering, 2023, 3(1): 1.
[57] HATTORI M, IIJIMA S, NAKAO T, et al.Solid solution for catalytic ammonia synthesis from nitrogen and hydrogen gases at 50?℃[J]. Nature communications, 2020, 11: 2001.
[58] ABGHOUI Y, SKÚLASON E. Computational predictions of catalytic activity of zincblende (110) surfaces of metal nitrides for electrochemical ammonia synthesis[J]. The journal of physical chemistry C, 2017, 121(11): 6141-6151.
[59] LI X, YAN Q, WANG B, et al.The nitrogen vacancy and oxygen substitution of OsN2: first-principles investigation[J]. Journal of alloys and compounds, 2014, 590: 27-32.
[60] MAO C L, WANG J X, ZOU Y J, et al.Hydrogen spillover to oxygen vacancy of TiO2-xHy/Fe: breaking the scaling relationship of ammonia synthesis[J]. Journal of the American Chemical Society, 2020, 142(41): 17403-17412.
[61] WANG Q R, GUAN Y Q, GAO W B, et al.Thermodynamic properties of ammonia production from hydrogenation of alkali and alkaline earth metal amides[J]. ChemPhysChem, 2019, 20(10): 1376-1381.
[62] BURROWS L, GAO P X, BOLLAS G M.Thermodynamic feasibility analysis of distributed chemical looping ammonia synthesis[J]. Chemical engineering journal, 2021, 426: 131421.
[63] 张谭, 余钟亮, 余嘉祺, 等. 基于高性能负载型钼基载氮体的化学链合成氨性能研究[J]. 化学学报, 2022, 80(6): 788-796.
ZHANG T, YU Z L, YU J Q, et al.Chemical looping ammonia synthesis with high performance supported molybdenum-based nitrogen carrier[J]. Acta chimica sinica, 2022, 80(6): 788-796.
[64] HUMPHREYS J, LAN R, TAO S W.Development and recent progress on ammonia synthesis catalysts for haber-bosch process[J]. Advanced energy and sustainability research, 2021, 2(1): 2000043.
[65] YU X J, LIN B Y, LIN J X, et al.A novel fused iron catalyst for ammonia synthesis promoted with rare earth gangue[J]. Journal of rare earths, 2008, 26(5): 711-716.
[66] LIN B Y, LIU Y, HENG L, et al.Effect of Barium and potassium promoter on Co/CeO2 catalysts in ammonia synthesis[J]. Journal of rare earths, 2018, 36(7): 703-707.
[67] TAGAWA K, GI H, SHINZATO K, et al.Improvement of kinetics of ammonia synthesis at ambient pressure by the chemical looping process of lithium hydride[J]. The journal of physical chemistry C, 2022, 126(5): 2403-2409.
[68] YE T N, PARK S W, LU Y F, et al.Vacancy-enabled N2 activation for ammonia synthesis on an Ni-loaded catalyst[J]. Nature, 2020, 583: 391-395.
[69] LU Y F, YE T N, LI J, et al.Approach to chemically durable nickel and cobalt lanthanum-nitride-based catalysts for ammonia synthesis[J]. Angewandte chemie international edition, 2022, 61(47): e202211759.
[70] LIU B, MANAVI N, DENG H, et al.Activation of N2 on manganese nitride-supported Ni3 and Fe3 clusters and relevance to ammonia formation[J]. The journal of physical chemistry letters, 2021, 12(28): 6535-6542.
[71] SUN W H, BARTEL C J, ARCA E, et al.A map of the inorganic ternary metal nitrides[J]. Nature materials, 2019, 18: 732-739.
[72] FAN J X, LI W X, LI S A, et al.High-throughput screening of bicationic redox materials for chemical looping ammonia synthesis[J]. Advanced science, 2022, 9(27): 2202811.
[73] LUO Q, LU C C, LIU L R, et al.A review on the synthesis of transition metal nitride nanostructures and their energy related applications[J]. Green energy and environment, 2023, 8: 406-437.
[74] HE S, CHEN Y F, WANG M D, et al.Metal nitride nanosheets enable highly efficient electrochemical oxidation of ammonia[J]. Nano energy, 2021, 80: 105528.
[75] NINGTHOUJAM R S, GAJBHIYE N S.Synthesis, electron transport properties of transition metal nitrides and applications[J]. Progress in materials science, 2015, 70: 50-154.
[76] SUN Z H, ZHANG J Q, YIN L C, et al.Conductive porous vanadium nitride/graphene composite as chemical anchor of polysulfides for lithium-sulfur batteries[J]. Nature communications, 2017, 8: 14627.
[77] YUAN Y, WANG J C, ADIMI S, et al.Zirconium nitride catalysts surpass platinum for oxygen reduction[J]. Nature materials, 2020, 19: 282-286.
[78] JAYSIVA G, MANAVALAN S, CHEN S M, et al.MoN nanorod/sulfur-doped graphitic carbon nitride for electrochemical determination of chloramphenicol[J]. ACS sustainable chemistry & engineering, 2020, 8(30): 11088-11098.
[79] QIU Y, GAO L.Metal-urea complex-a precursor to metal nitrides[J]. Journal of the American Ceramic Society, 2004, 87(3): 352-357.
[80] GAO W B, WANG P K, GUO J P, et al.Barium hydride-mediated nitrogen transfer and hydrogenation for ammonia synthesis: a case study of cobalt[J]. ACS catalysis, 2017, 7(5): 3654-3661.
[81] JUANGSA F B, AZIZ M.Integrated system of thermochemical cycle of ammonia, nitrogen production, and power generation[J]. International journal of hydrogen energy, 2019, 44(33): 17525-17534.
[82] FANG J, XIONG C H, FENG M Q, et al.Utilization of carbon-based energy as raw material instead of fuel with low CO2 emissions: energy analyses and process integration of chemical looping ammonia generation[J]. Applied energy, 2022, 312: 118809.
[83] WINTER L R, CHEN J G.N2 fixation by plasma-activated processes[J]. Joule, 2021, 5(2): 300-315.
[84] 王敬. 两种气化方法生产合成氨的经济性分析[J]. 山西化工, 2018, 38(4): 125-127.
WANG J.Economic analysis of two gasification methods for ammonia production[J]. Shanxi chemical industry, 2018, 38(4): 125-127.
[85] 毛涛联, 文罡. 合成氨装置低负荷经济性与稳定性探讨[J]. 大氮肥, 2013, 36(2): 93-95, 104.
MAO T L, WEN G.Discussion on economics and stability of ammonia plant at low-load[J]. Large scale nitrogenous fertilizer industry, 2013, 36(2): 93-95, 104.

基金

国家自然科学基金(52076045)

PDF(2515 KB)

Accesses

Citation

Detail

段落导航
相关文章

/