基于转矩定量分析的VSG低频特性校正方法

于鸿儒, 陈中, 蔡骏, 陆寅, 史艳琼

太阳能学报 ›› 2024, Vol. 45 ›› Issue (8) : 135-143.

PDF(1628 KB)
欢迎访问《太阳能学报》官方网站,今天是
PDF(1628 KB)
太阳能学报 ›› 2024, Vol. 45 ›› Issue (8) : 135-143. DOI: 10.19912/j.0254-0096.tynxb.2023-0550

基于转矩定量分析的VSG低频特性校正方法

  • 于鸿儒1, 陈中1, 蔡骏2, 陆寅1, 史艳琼1
作者信息 +

LOW FREQUENCY CHARACTERISTIC CORRECTION METHOD OF VSG BASED ON TORQUE QUANTITATIVE ANALYSIS

  • Yu Hongru1, Chen Zhong1, Cai Jun2, Lu Yin1, Shi Yanqiong1
Author information +
文章历史 +

摘要

首先建立虚拟同步发电机(VSG)的虚拟转矩模型,通过虚拟转矩的定量分析揭示导致VSG低频特性发生变化的主要因素:次同步谐振对VSG的低频特性产生耦合影响和锁相环的负阻尼效应。在论证增加阻尼抑制次同步谐振可行性的基础上,给出稳态阻尼、动态阻尼联合取值方法,而后指出动态阻尼对VSG性能的影响;论证通过相位补偿法抑制低频振荡的可行性,通过对VSG转矩的定量校正,保证VSG的性能指标与设计预期一致。最后通过实验验证理论分析的正确性和设计方法的有效性。

Abstract

Firstly, a virtual torque model of virtual synchronous generator (VSG) is established, and the quantitative analysis of virtual torque reveals the main factors that lead to change of the low-frequency characteristics of VSG. That is the coupling effect of sub synchronous resonance on the low-frequency characteristics of VSG and the negative damping effect of phase-locked loop. On the basis of demonstrating the feasibility of increasing damping to suppress sub synchronous resonance, a joint valuing method for steady-state damping and dynamic damping is proposed, and then the influence of dynamic damping on VSG performance is pointed out. The feasibility of suppressing low-frequency oscillations through phase compensation method is demonstrated, and the consistency of the performance indicators of VSG with design expectations is ensured through quantitative correction of VSG torque. Finally, the correctness of theoretical analysis and the effectiveness of design methods are verified through experiments.

关键词

逆变器 / 虚拟同步发电机 / 低频振荡 / 阻尼转矩 / 相位补偿 / 转矩校正

Key words

inverter / virtual synchronous generator / low frequency oscillation / damping torque / phase compensation / torque correction

引用本文

导出引用
于鸿儒, 陈中, 蔡骏, 陆寅, 史艳琼. 基于转矩定量分析的VSG低频特性校正方法[J]. 太阳能学报. 2024, 45(8): 135-143 https://doi.org/10.19912/j.0254-0096.tynxb.2023-0550
Yu Hongru, Chen Zhong, Cai Jun, Lu Yin, Shi Yanqiong. LOW FREQUENCY CHARACTERISTIC CORRECTION METHOD OF VSG BASED ON TORQUE QUANTITATIVE ANALYSIS[J]. Acta Energiae Solaris Sinica. 2024, 45(8): 135-143 https://doi.org/10.19912/j.0254-0096.tynxb.2023-0550
中图分类号: TM464   

参考文献

[1] 曹炜, 钦焕乘, 陆建忠, 等. 新型电力系统下虚拟同步机的定位和应用前景展望[J]. 电力系统自动化, 2023, 47(4): 190-207.
CAO W, QIN H C, LU J Z, et al.Orientation and application prospect of virtual synchronous generator in new power system[J]. Automation of electric power systems, 2023, 47(4): 190-207.
[2] LI Y, RUAN X B, YANG D S, et al.Modeling, analysis and design for hybrid power systems with dual-input DC/DC converter[C]//2009 IEEE Energy Conversion Congress and Exposition, San Jose, CA, USA, 2009: 3203-3210.
[3] 吕志鹏, 盛万兴, 钟庆昌, 等. 虚拟同步发电机及其在微电网中的应用[J]. 中国电机工程学报, 2014, 34(16): 2591-2603.
LYU Z P, SHENG W X, ZHONG Q C, et al.Virtual synchronous generator and its applications in micro-grid[J]. Proceedings of the CSEE, 2014, 34(16): 2591-2603.
[4] WU H, RUAN X B, YANG D S, et al.Small-signal modeling and parameters design for virtual synchronous generators[J]. IEEE transactions on industrial electronics, 2016, 63(7): 4292-4303.
[5] 詹长江, 吴恒, 王雄飞, 等. 构网型变流器稳定性研究综述[J]. 中国电机工程学报, 2023, 43(6): 2339-2359.
ZHAN C J, WU H, WANG X F, et al.An overview of stability studies of grid-forming voltage source converters[J]. Proceedings of the CSEE, 2023, 43(6): 2339-2359.
[6] 于晶荣, 孙文, 于佳琪, 等. 基于惯性自适应的并网逆变器虚拟同步发电机控制[J]. 电力系统保护与控制, 2022, 50(4): 137-144.
YU J R, SUN W, YU J Q, et al.Virtual synchronous generator control of a grid-connected inverter based on adaptive inertia[J]. Power system protection and control, 2022, 50(4): 137-144.
[7] 李志军, 杨梦伟, 张家安, 等. VSG惯量及阻尼的协同自适应控制研究[J]. 电力系统及其自动化学报, 2023, 35(1): 36-43.
LI Z J, YANG M W, ZHANG J A, et al.Research on synergistical adaptive control of inertia and damping of VSG[J]. Proceedings of the CSU-EPSA, 2023, 35(1): 36-43.
[8] 郭建祎, 樊友平. 基于改进粒子群算法的VSG参数自适应控制策略[J]. 电机与控制学报, 2022, 26(6): 72-82.
GUO J Y, FAN Y P.Adaptive VSG parameter control strategy based on improved particle swarm optimization[J]. Electric machines and control, 2022, 26(6): 72-82.
[9] 杨旭红, 李辉, 金宏艳, 等. 基于模型预测控制的虚拟同步发电机控制策略[J]. 太阳能学报, 2022, 43(11): 508-514.
YANG X H, LI H, JIN H Y, et al.Virtual synchronous generator control strategy based on model predictive control[J]. Acta energiae solaris sinica, 2022, 43(11): 508-514.
[10] VOROBEV P, HUANG P H, AL HOSANI M, et al.High-fidelity model order reduction for microgrids stability assessment[J]. IEEE transactions on power systems, 2018, 33(1): 874-887.
[11] YU H R, SU J H, WANG H N, et al.Modelling method and applicability analysis of a reduced-order inverter model for microgrid applications[J]. IET power electronics, 2020, 13(12): 2638-2650.
[12] GÖTHNER F, ROLDÁN-PÉREZ J, TORRES-OLGUIN R E, et al. Reduced-order model of distributed generators with internal loops and virtual impedance[J]. IEEE transactions on smart grid, 2022, 13(1): 119-128.
[13] 赵梓含, 郭力, 李霞林, 等. 柴储微电网虚拟惯量和阻尼系数可行域分析方法[J]. 中国电机工程学报, 2023, 43(22): 8719-8734.
ZHAO Z H, GUO L, LI X L, et al.Feasible region analysis method of virtual inertia and damping of DGS-ESS microgrid[J]. Proceedings of the CSEE, 2023, 43(22): 8719-8734.
[14] 李武华, 王金华, 杨贺雅, 等. 虚拟同步发电机的功率动态耦合机理及同步频率谐振抑制策略[J]. 中国电机工程学报, 2017, 37(2): 381-391.
LI W H, WANG J H, YANG H Y, et al.Power dynamic coupling mechanism and resonance suppression of synchronous frequency for virtual synchronous generators[J]. Proceedings of the CSEE, 2017, 37(2): 381-391.
[15] 马也, 史丽萍, 李衡, 等. 基于VSG控制的微网逆变器工频振荡现象研究[J]. 电力系统保护与控制, 2022, 50(1): 107-115.
MA Y, SHI L P, LI H, et al.Power frequency oscillation of a microgrid inverter based on VSG control[J]. Power system protection and control, 2022, 50(1): 107-115.
[16] 于鸿儒, 苏建徽, 郑林, 等. 储能逆变器并网次同步谐振机理分析与抑制方法[J]. 电力系统自动化, 2020, 44(23): 99-108.
YU H R, SU J H, ZHENG L, et al.Mechanism analysis and suppression method of sub-synchronous resonance for energy storage inverter connecting to power grid[J]. Automation of electric power systems, 2020, 44(23): 99-108.
[17] 马燕峰, 郑力文, 霍亚欣, 等. 虚拟同步发电机接入电力系统的阻尼转矩分析[J]. 电力自动化设备, 2020, 40(4): 166-171.
MA Y F, ZHENG L W, HUO Y X, et al.Damping torque analysis of virtual synchronous generator connected to power system[J]. Electric power automation equipment, 2020, 40(4): 166-171.
[18] HUANG L B, XIN H H, WANG Z.Damping low-frequency oscillations through VSC-HV DC stations operated as virtual synchronous machines[J]. IEEE transactions on power electronics, 2019, 34(6): 5803-5818.
[19] 周一辰, 李沙, 李永刚, 等. 基于嵌合转矩法的虚拟同步机多回路保结构稳定分析[J]. 电网技术, 2022, 46(2): 733-751.
ZHOU Y C, LI S, LI Y G, et al.Stability analysis of multi-loop guarantee structure of virtual synchronous machine based on chimeric torque method[J]. Power system technology, 2022, 46(2): 733-751.
[20] CHEN J R, O’DONNELL T. Parameter constraints for virtual synchronous generator considering stability[J]. IEEE transactions on power systems, 2019, 34(3): 2479-2481.

基金

安徽省工程机械智能制造重点实验室开放课题基金资助(IMCM2022KF04)

PDF(1628 KB)

Accesses

Citation

Detail

段落导航
相关文章

/