针对风光氢耦合系统源荷两侧不确定性对系统运行造成的影响,提出一种基于经济随机模型预测控制的优化方法。根据风光氢耦合系统中设备的特性,建立计及设备启停的状态空间模型;利用场景生成技术对风光出力及电负荷预测数据进行处理,以生成描述系统不确定性的场景集;基于生成的场景集,在设计的经济随机模型预测控制框架下,构造系统的混合整数线性规划问题,进而对系统进行经济优化控制。由于经济随机模型预测控制方法需提供准确描述系统不确定性的场景集,为此提出一种基于非参数预测的场景生成机制。通过案例仿真分析,相较于常规随机模型预测控制方法,所提控制方法降低5.89%的运行成本;相较于常规模型预测控制方法,降低13.25%的运行成本,验证了所提方法能有效解决风光氢耦合系统的不确定性。
Abstract
An optimization method based on economic stochastic model prediction control is proposed to address the impact of uncertainty on both sides of the source and load of the wind-solar-hydrogen coupling system. Firstly, according to the characteristics of the equipment in the wind-solar-hydrogen coupling system, a state-space model considering the start-stop state of the equipment is established. Then, the scenario generation technology is used to process wind and solar output, as well as electrical load prediction data to generate a scenario set that describes the system uncertainty. Finally, based on the generated scenarios, a mixed-integer linear programming problem is formulated under the designed economic stochastic model predictive control framework, and then the system is economically optimized and controlled. A scenario generation mechanism based on nonparametric prediction is proposed, which provides a scenario set that accurately describes the system's uncertainty for the economic stochastic model prediction control method. Simulation results demonstrate the effectiveness of the proposed method in addressing uncertainty in the wind-solar-hydrogen coupling system, achieving a 5.89% reduction in operating costs compared to conventional stochastic model predictive control method, and a 13.25% reduction compared to conventional model predictive control method.
关键词
风电 /
光伏 /
氢能 /
非参数预测 /
不确定性 /
随机模型预测控制 /
场景生成
Key words
wind power /
PV /
hydrogen /
nonparametric prediction /
uncertainty /
stochastic model predictive control /
scenario generation
{{custom_sec.title}}
{{custom_sec.title}}
{{custom_sec.content}}
参考文献
[1] 李建林, 梁忠豪, 李光辉, 等. 太阳能制氢关键技术研究[J]. 太阳能学报, 2022, 43(3): 2-11.
LI J L, LIANG Z H, LI G H, et al.Analysis of key technologies for solar hydrogen production[J]. Acta energiae solaris sinica, 2022, 43(3): 2-11.
[2] KBIDI F, DAMOUR C, GRONDIN D, et al.Multistage power and energy management strategy for hybrid microgrid with photovoltaic production and hydrogen storage[J]. Applied energy, 2022, 323: 119549.
[3] ABDELGHANY M B, SHEHZAD M F, LIUZZA D, et al.Optimal operations for hydrogen-based energy storage systems in wind farms via model predictive control[J]. International journal of hydrogen energy, 2021, 46(57): 29297-29313.
[4] 赵团团, 邬昌军, 巩晓赟. 基于最优滚动控制域的储能控制策略[J]. 太阳能学报, 2023, 44(2): 247-253.
ZHAO T T, WU C J, GONG X Y.Energy storage control strategy based on optimal rolling control domain[J]. Acta energiae solaris sinica, 2023, 44(2): 247-253.
[5] 孔令国, 于家敏, 蔡国伟, 等. 基于模型预测控制的离网电氢耦合系统功率调控[J]. 中国电机工程学报, 2021, 41(9): 3139-3149.
KONG L G, YU J M, CAI G W, et al.Power regulation of off-grid electro-hydrogen coupled system based on model predictive control[J]. Proceedings of the CSEE, 2021, 41(9): 3139-3149.
[6] ABDELGHANY M B, SHEHZAD M F, MARIANI V, et al.Two-stage model predictive control for a hydrogen-based storage system paired to a wind farm towards green hydrogen production for fuel cell electric vehicles[J]. International journal of hydrogen energy, 2022, 47(75): 32202-32222.
[7] GOMES I L R, RUANO M G, RUANO A E. MILP-based model predictive control for home energy management systems: a real case study in Algarve, Portugal[J]. Energy and buildings, 2023, 281: 112774.
[8] 董雷, 刘梦夏, 陈乃仕, 等. 基于随机模型预测控制的分布式能源协调优化控制[J]. 电网技术, 2018, 42(10): 3219-3227.
DONG L, LIU M X, CHEN N S, et al.Coordinated optimal control of distributed energy based on stochastic model predictive control[J]. Power system technology, 2018, 42(10): 3219-3227.
[9] 王皓, 艾芊, 甘霖, 等. 基于多场景随机规划和MPC的冷热电联合系统协同优化[J]. 电力系统自动化, 2018, 42(13): 51-58.
WANG H, AI Q, GAN L, et al.Collaborative optimization of combined cooling heating and power system based on multi-scenario stochastic programming and model predictive control[J]. Automation of electric power systems, 2018, 42(13): 51-58.
[10] ZHANG Z F, DA SILVA F F, GUO Y F, et al. Double-layer stochastic model predictive voltage control in active distribution networks with high penetration of renewables[J]. Applied energy, 2021, 302: 117530.
[11] 陈光宇, 杨锡勇, 江海洋, 等. 高比例新能源接入下计及工业负荷特性的电网需求响应调控策略[J]. 电力自动化设备, 2023, 43(4): 177-184.
CHEN G Y, YANG X Y, JIANG H Y, et al.Demand response regulation strategy for power grid accessed with high proportion of renewable energy considering industrial load characteristics[J]. Electric power automation equipment, 2023, 43(4): 177-184.
[12] WANG Y, ZHOU Z, BOTTERUD A, et al.Stochastic coordinated operation of wind and battery energy storage system considering battery degradation[J]. Journal of modern power systems and clean energy, 2016, 4(4): 581-592.
[13] TOBAJAS J, GARCIA-TORRES F, RONCERO-SÁNCHEZ P, et al. Resilience-oriented schedule of microgrids with hybrid energy storage system using model predictive control[J]. Applied energy, 2022, 306: 118092.
[14] 苟小菊, 王芊. 基于分位数回归森林的VaR估计及风险因素分析[J]. 中国科学技术大学学报, 2019, 49(8): 635-644.
GOU X J, WANG Q.VaR estimation based on quantile regression forest and risk factors analysis[J]. Journal of University of Science and Technology of China, 2019, 49(8): 635-644.
[15] PINSON P, MADSEN H, NIELSEN H A, et al.From probabilistic forecasts to statistical scenarios of short-term wind power production[J]. Wind energy, 2009, 12(1): 51-62.
[16] 魏斌, 韩肖清, 李雯, 等. 融合多场景分析的交直流混合微电网多时间尺度随机优化调度策略[J]. 高电压技术, 2020, 46(7): 2359-2369.
WEI B, HAN X Q, LI W, et al.Multi-time scale stochastic optimal dispatch for AC/DC hybrid microgrid incorporating multi-scenario analysis[J]. High voltage engineering, 2020, 46(7): 2359-2369.
[17] 艾永乐, 丁剑英, 刘群峰, 等. 计及负荷需求响应的并网家用光伏系统协同优化调度[J]. 太阳能学报, 2021, 42(9): 104-114.
AI Y L, DING J Y, LIU Q F, et al.Synergetic optimal scheduling of grid-connected household photovoltaic system considering demand response for loads[J]. Acta energiae solaris sinica, 2021, 42(9): 104-114.
基金
国家自然科学基金(62203172); 中央高校基本科研业务费专项(2021MS089)