大型光伏电站全直流送出关键问题研究

徐政, 徐文哲, 郭瀚临, 华文, 裘鹏, 张哲任

太阳能学报 ›› 2024, Vol. 45 ›› Issue (8) : 324-331.

PDF(1762 KB)
欢迎访问《太阳能学报》官方网站,今天是
PDF(1762 KB)
太阳能学报 ›› 2024, Vol. 45 ›› Issue (8) : 324-331. DOI: 10.19912/j.0254-0096.tynxb.2023-0555

大型光伏电站全直流送出关键问题研究

  • 徐政1, 徐文哲1, 郭瀚临1, 华文2, 裘鹏1,2, 张哲任1
作者信息 +

RESEARCH ON KEY ISSUES OF FULL DC TRANSMISSION SCHEME FOR LARGE-SCALE PHOTOVOLTAIC POWER STATIONS

  • Xu Zheng1, Xu Wenzhe1, Guo Hanlin1, Hua Wen2, Qiu Peng1,2, Zhang Zheren1
Author information +
文章历史 +

摘要

研究浙江舟山地区小洋山薄刀咀118 MW光伏电站全直流送出方案。介绍全直流送出系统的构建原理,重点阐述拓扑结构选择、接地方式、直流电压控制等关键技术问题。明确多级直流升压系统的构建原理。在PSCAD/EMTDC平台上搭建相应仿真系统,通过时域仿真验证所提小洋山薄刀咀118 MW光伏电站全直流送出方案的可行性。

Abstract

This paper studies the full DC transmission scheme of 118 MWp photovoltaic power station in Xiaoyangshan Bodaozui island of Zhoushan, Zhejiang Province. The construction principle of the full DC transmission system is introduced, and the key technical issues such as the topology selection, the grounding method, and the DC voltage control are clarified. The composition principle of DC-DC converters at all levels is specified. A corresponding simulation system is built on the PSCAD/EMTDC platform and the time-domain simulation verifies the feasibility of the proposed full DC transmission scheme of 118 MWp photovoltaic power station in Xiaoyangshan Bodaozui island.

关键词

光伏发电 / 高压直流输电 / 直流变压器 / 接地方式 / 直流电压控制

Key words

photovoltaic power / high voltage DC transmission / DC-DC converters / grounding method / DC voltage control

引用本文

导出引用
徐政, 徐文哲, 郭瀚临, 华文, 裘鹏, 张哲任. 大型光伏电站全直流送出关键问题研究[J]. 太阳能学报. 2024, 45(8): 324-331 https://doi.org/10.19912/j.0254-0096.tynxb.2023-0555
Xu Zheng, Xu Wenzhe, Guo Hanlin, Hua Wen, Qiu Peng, Zhang Zheren. RESEARCH ON KEY ISSUES OF FULL DC TRANSMISSION SCHEME FOR LARGE-SCALE PHOTOVOLTAIC POWER STATIONS[J]. Acta Energiae Solaris Sinica. 2024, 45(8): 324-331 https://doi.org/10.19912/j.0254-0096.tynxb.2023-0555
中图分类号: TM721.1   

参考文献

[1] 李晖, 刘栋, 姚丹阳. 面向碳达峰碳中和目标的我国电力系统发展研判[J]. 中国电机工程学报, 2021, 41(18): 6245-6259.
LI H, LIU D, YAO D Y.Analysis and reflection on the development of power system towards the goal of carbon emission peak and carbon neutrality[J]. Proceedings of the CSEE, 2021, 41(18): 6245-6259.
[2] 张智刚, 康重庆. 碳中和目标下构建新型电力系统的挑战与展望[J]. 中国电机工程学报, 2022, 42(8): 2806-2819.
ZHANG Z G, KANG C Q.Challenges and prospects for constructing the new-type power system towards a carbon neutrality future[J]. Proceedings of the CSEE, 2022, 42(8): 2806-2819.
[3] 嵊泗县人民政府关于印发嵊泗县全力打造高质量发展建设共同富裕示范区海岛样板县实施方案(2022—2024年)的通知[EB/OL]. https://www.shengsi.gov.cn/art/2022/9/29/art_1229107458_1646826.html.[2022-09-27].
Notice of the People’s Government of Shengsi County on printing and distributing the implementation plan (2022—2024) of Shengsi County to build a high-quality development and common prosperity demonstration area and an island model county[EB/OL]. https://www.shengsi.gov.cn/art/2022/9/29/.art_1229107458_1646826.html.[2022-09-27].
[4] 黄欣科, 王环, 王一波, 等. N-M光伏直流变换器串联系统可靠性分析[J]. 太阳能学报, 2021, 42(8): 440-448.
HUANG X K, WANG H, WANG Y B, et al.Reliability analysis of N-M PV DC-DC converter series system[J]. Acta energiae solaris sinica, 2021, 42(8): 440-448.
[5] 郑超, 林俊杰, 赵健, 等. 规模化光伏并网系统暂态功率特性及电压控制[J]. 中国电机工程学报, 2015, 35(5): 1059-1071.
ZHENG C, LIN J J, ZHAO J, et al.Transient power characteristic of scaled photovoltaic grid-connected system and its voltage control[J]. Proceedings of the CSEE, 2015, 35(5): 1059-1071.
[6] 肖峰, 韩民晓, 唐晓骏, 等. 含大规模光伏并网的弱送端系统的电压稳定性[J]. 中国电力, 2020, 53(11): 31-39.
XIAO F, HAN M X, TANG X J, et al.Voltage stability of weak sending-end system with large-scale grid-connected photovoltaic power plants[J]. Electric power, 2020, 53(11): 31-39.
[7] 徐政, 金砚秋, 李斯迅, 等. 海上风电场交流并网谐波谐振放大机理分析与治理[J]. 电力系统自动化, 2021, 45(21): 85-91.
XU Z, JIN Y Q, LI S X, et al.Mechanism analysis and mitigation of harmonic resonance amplification caused by AC integration of offshore wind farm[J]. Automation of electric power systems, 2021, 45(21): 85-91.
[8] BUCHHAGEN C, RAUSCHER C, MENZE A, et al.BorWin1-first experiences with harmonic interactions in converter dominated grids[C]//International ETG Congress: Die Energiewende-blueprints for the New Energy Age. Bonn, Germany, 2015.
[9] LIU H K, XIE X R, LIU W.An oscillatory stability criterion based on the unified dq-frame impedance network model for power systems with high-penetration renewables[J]. IEEE transactions on power systems, 2018, 33(3): 3472-3485.
[10] 陈佳玺, 江道灼, 张翀, 等. 基于模块化LLC谐振变换器的光伏中压直流并网方案[J]. 电力建设, 2018, 39(10): 44-53.
CHEN J X, JIANG D Z, ZHANG C, et al.Study on MVDC grid-connected scheme based on modular LLC resonant converters for photovoltaic energy[J]. Electric power construction, 2018, 39(10): 44-53.
[11] 张杰. 大功率高升压比光伏直流变压器控制策略研究[D]. 合肥: 合肥工业大学, 2019.
ZHANG J.Research on control strategy of high-power high-step-up ratio photovoltaic DC transformer[D]. Hefei: Hefei University of Technology, 2019.
[12] 樊艳芳, 高文森, 王一波, 等. 电网故障时大型光伏电站直流外送系统LVRT控制策略[J]. 太阳能学报, 2018, 39(7): 1856-1864.
FAN Y F, GAO W S, WANG Y B, et al.LVRT control strategy of DC transmission system for large-scale PV power plant under grid faults[J]. Acta energiae solaris sinica, 2018, 39(7): 1856-1864.
[13] GU B, DOMINIC J, CHEN B F, et al.Hybrid transformer ZVS/ZCS DC-DC converter with optimized magnetics and improved power devices utilization for photovoltaic module applications[J]. IEEE transactions on power electronics, 2015, 30(4): 2127-2136.
[14] 余滢婷, 刘飞, 查晓明, 等. 光伏电站直流汇集系统电压等级序列研究[J]. 太阳能学报, 2020, 41(10): 182-189.
YU Y T, LIU F, ZHA X M, et al.DC convergence system voltage class series for PV power station[J]. Acta energiae solaris sinica, 2020, 41(10): 182-189.
[15] 刘黎, 蔡旭, 俞恩科, 等. 舟山多端柔性直流输电示范工程及其评估[J]. 南方电网技术, 2019, 13(3): 79-88.
LIU L, CAI X, YU E K, et al.Zhoushan multi-terminal VSC-HVDC transmission demonstration project and its evaluation[J]. Southern power system technology, 2019, 13(3): 79-88.
[16] 徐政. 柔性直流输电系统[M]. 2版. 北京: 机械工业出版社, 2017.
XU Z.Flexible DC transmission system[M]. 2nd ed. Beijing: China Machine Press, 2017.
[17] 阙波, 李继红, 汪楠楠, 等. 基于桥臂阻尼的柔性直流故障快速恢复方案[J]. 电力系统自动化, 2016, 40(24): 85-91.
QUE B, LI J H, WANG N N, et al.Arm damping based quick recovery scheme for flexible HVDC fault[J]. Automation of electric power systems, 2016, 40(24): 85-91.
[18] 刘黎, 俞兴伟, 乔敏. 直流断路器及阻尼快速恢复系统在舟山多端柔性直流输电工程中的应用[J]. 浙江电力, 2018, 37(9): 8-13.
LIU L, YU X W, QIAO M.Application of DC circuit breaker and damping fast recovery system in multi terminal flexible DC transmission project in Zhoushan[J]. Zhejiang electric power, 2018, 37(9): 8-13.
[19] 徐政. 高比例非同步机电源电网面临的三大技术挑战[J]. 南方电网技术, 2020, 14(2): 1-9.
XU Z.Three technical challenges faced by power grids with high proportion of non-synchronous machine sources[J]. Southern power system technology, 2020, 14(2): 1-9.

PDF(1762 KB)

Accesses

Citation

Detail

段落导航
相关文章

/