潮流能水轮机流场特性的数值与实验研究

荆丰梅, 王毅, 郭彬, 刘杨, 李思睿

太阳能学报 ›› 2024, Vol. 45 ›› Issue (8) : 660-667.

PDF(2093 KB)
欢迎访问《太阳能学报》官方网站,今天是
PDF(2093 KB)
太阳能学报 ›› 2024, Vol. 45 ›› Issue (8) : 660-667. DOI: 10.19912/j.0254-0096.tynxb.2023-0558

潮流能水轮机流场特性的数值与实验研究

  • 荆丰梅1, 王毅1, 郭彬2, 刘杨3, 李思睿1
作者信息 +

NUMERICAL AND EXPERIMENTAL STUDY OF FLOW FIELD CHARACTERISTICS OF TIDAL ENERGY TURBINES

  • Jing Fengmei1, Wang Yi1, Guo Bin2, Liu Yang3, Li Sirui1
Author information +
文章历史 +

摘要

通过数值模拟和模型实验相结合的方式,研究水轮机近域的流场特性对其水动力性能的影响,分析远域下不同入流速度和尖速比等因素对尾流场特性的影响。研究结果表明,在设计尖速比下,水轮机能量转换效率的数值模拟结果(0.37)与实验结果(0.36)的误差为0.3%,水轮机阻力系数的数值模拟结果(0.73)与实验结果(0.76)的误差为-4%,验证了数值模拟方法的准确性;水轮机梢部存在明显的三维流动现象,水轮机盘前梢部存在由叶根流向叶梢的径向流速(0.24 m/s),盘后梢部存在由叶梢流向叶根的径向流速(0.14 m/s),该叶片梢部尾流区的“下洗”流速导致水轮机能量转换效率下降;入流速度不会对尾流区轴向速度的恢复产生显著影响;在近尾流区(距离盘面小于5D)随尖速比的增加,尾流区轴向速度恢复呈逐渐降低的趋势,而在距离水轮机盘面超过10D之后,尖速比不会对尾流轴向速度恢复产生明显影响,但尖速比的增加会使梢涡存在时间变短,梢涡破碎的位置更靠近水轮机盘面。

Abstract

This article combines numerical simulations and model experiments to study the influence of flow field characteristics on the hydrodynamic performance of turbines in the near-field. The effect of different factors such as inflow velocity and tip-speed ratio on the wake field characteristics in the far-field is analyzed. The research results show that the relative error of power coefficient between the numerical simulation result (0.37) and the experimental result (0.36) is 0.3% at the designed tip speed ratio, and the relative error of drag coefficient between the numerical simulation result (0.73) and the experimental result (0.76) is -4%. There are significant three-dimensional flow phenomena at the blade tip of the tidal turbine, there is a radial velocity (0.24 m/s) at the front of the turbine disk which flows from the blade root to the tip, and there is a radial velocity (0.14 m/s) at the rear of the turbine disk which flows from the blade tip to the root. The downwash flow velocity near the wake zone of the blade tip causes a decrease in the energy conversion efficiency of the turbine. The inflow velocity has no a significant impact on the recovery of axial velocity in the wake region; In the near wake region (within 5D distance from the disk), with the increase of tip-speed ratio, the recovery of axial velocity in the wake shows a gradually decreasing trend. When the distance from the water turbine disk exceeds 10D, the tip-speed ratio does not have a significant effect on the recovery of axial velocity in the wake. However, the increase of tip-speed ratio will shorten the existence time of the blade vortex and make the location where the blade vortex is broken closer to the water turbine disk.

关键词

潮流能 / 数值模拟 / 模型试验 / 水轮机 / 流场特性 / 粒子图像测速技术(PIV) / 水动力特性

Key words

tidal energy / numerical simulation / model test / water turbine / flow field characteristics / praticle image velocimetry(PIV) / hydrodynamic characteristic

引用本文

导出引用
荆丰梅, 王毅, 郭彬, 刘杨, 李思睿. 潮流能水轮机流场特性的数值与实验研究[J]. 太阳能学报. 2024, 45(8): 660-667 https://doi.org/10.19912/j.0254-0096.tynxb.2023-0558
Jing Fengmei, Wang Yi, Guo Bin, Liu Yang, Li Sirui. NUMERICAL AND EXPERIMENTAL STUDY OF FLOW FIELD CHARACTERISTICS OF TIDAL ENERGY TURBINES[J]. Acta Energiae Solaris Sinica. 2024, 45(8): 660-667 https://doi.org/10.19912/j.0254-0096.tynxb.2023-0558
中图分类号: TM612   

参考文献

[1] 陈娅玲. 潮流水轮机及阵列对周边流场影响研究[D]. 北京: 清华大学, 2015.
CHEN Y L.Study on the effects of tidal turbine and array on the flow field[D]. Beijing: Tsinghua University, 2015.
[2] 杜修茂, 司先才, 袁鹏, 等. 潮流能水轮机转子直径对阵列产能及附近水域的影响研究[J]. 太阳能学报, 2021, 42(11): 442-448.
DU X M, SI X C, YUAN P, et al.Study on influence of rotor diameters of tidal current turbine on array power and adjacent waters[J]. Acta energiae solaris sinica, 2021, 42(11): 442-448.
[3] RADFAR S, PANAHI R, MAJIDI NEZHAD M, et al.A numerical methodology to predict the maximum power output of tidal stream arrays[J]. Sustainability, 2022, 14(3): 1664.
[4] 张亚超. 水平轴潮流能发电机尾流效应的实验研究[D]. 杭州: 浙江大学, 2014.
ZHANG Y C.Experimental study on the wake effect of horizontal axis tidal current turbine[D]. Hangzhou: Zhejiang University, 2014.
[5] 张玉全, 郑源, 孙勇, 等. 基于致动盘的潮流能水轮机尾流场研究[J]. 可再生能源, 2019, 37(1): 144-150.
ZHANG Y Q, ZHENG Y, SUN Y, et al.Research on the wake characteristics of tidal stream turbine based on actuator disk method[J]. Renewable energy resources, 2019, 37(1): 144-150.
[6] MYERS L E, BAHAJ A S.Experimental analysis of the flow field around horizontal axis tidal turbines by use of scale mesh disk rotor simulators[J]. Ocean engineering, 2010, 37(2-3): 218-227.
[7] EL FAJRI O, BOWMAN J, BHUSHAN S, et al.Numerical study of the effect of tip-speed ratio on hydrokinetic turbine wake recovery[J]. Renewable energy, 2022, 182: 725-750.
[8] AHMADI M H B. Influence of upstream turbulence on the wake characteristics of a tidal stream turbine[J]. Renewable energy, 2019, 132: 989-997.
[9] 赵梦晌, 张玉全, 郑源, 等. 安装高程对潮流能水轮机尾迹特性影响试验研究[J]. 太阳能学报, 2022, 43(4): 486-492.
ZHAO M S, ZHANG Y Q, ZHENG Y, et al.Experimental study on influence of turbine setting elevation on wake characteristics of tidal turbine[J]. Acta energiae solaris sinica, 2022, 43(4): 486-492.
[10] 张亮, 王树齐, 马勇, 等. 潮流能水平轴叶轮纵摇运动水动力分析[J]. 哈尔滨工程大学学报, 2015, 36(3): 307-311.
ZHANG L, WANG S Q, MA Y, et al.The pitch hydrodynamic analysis of tidal current energy horizontal axis impeller[J]. Journal of Harbin Engineering University, 2015, 36(3): 307-311.
[11] WANG S Q, LI C Y, XIE Y Y, et al.Research on hydrodynamic characteristics of horizontal axis tidal turbine with rotation and pitching motion under free surface condition[J]. Ocean engineering, 2021, 235: 109383.
[12] 王树齐, 张理, 耿敬, 等. 偏流角对潮流能水轮机水动力影响研究[J]. 太阳能学报, 2016, 37(1): 249-255.
WANG S Q, ZHANG L, GENG J, et al.Study on effect of yaw angle on hydrodynamics of tidal current turbine[J]. Acta energiae solaris sinica, 2016, 37(1): 249-255.
[13] GUO B, WANG D Z, ZHOU X, et al.Performance evaluation of a tidal current turbine with bidirectional symmetrical foils[J]. Water, 2019, 12(1): 22.
[14] 郭彬, 王大政, 夏岚, 等. 水平轴潮流涡轮池壁效应修正方法分析[J]. 太阳能学报, 2022, 43(9): 382-390.
GUO B, WANG D Z, XIA L, et al.Analysis of blockage correction methods for horizontal axis tidal stream turbine[J]. Acta energiae solaris sinica, 2022, 43(9): 382-390.
[15] FERZIGER J H, PERIĆ M.Further discussion of numerical errors in CFD[J]. International journal for numerical methods in fluids, 1996, 23(12): 1263-1274.
[16] JING F M, MA W J, ZHANG L, et al.Experimental study of hydrodynamic performance of full-scale horizontal axis tidal current turbine[J]. Journal of hydrodynamics, series B, 2017, 29(1): 109-117.

基金

国家自然科学基金联合基金(U1706227); 山东省自然科学基金青年项目(ZR2022QE282)

PDF(2093 KB)

Accesses

Citation

Detail

段落导航
相关文章

/