基于改进YOLOv5的深度学习光伏组件“热斑效应”检测方法

王道累, 肖贝成, 姚从荣, 赵文彬, 朱瑞

太阳能学报 ›› 2024, Vol. 45 ›› Issue (8) : 342-348.

PDF(1561 KB)
欢迎访问《太阳能学报》官方网站,今天是
PDF(1561 KB)
太阳能学报 ›› 2024, Vol. 45 ›› Issue (8) : 342-348. DOI: 10.19912/j.0254-0096.tynxb.2023-0563

基于改进YOLOv5的深度学习光伏组件“热斑效应”检测方法

  • 王道累, 肖贝成, 姚从荣, 赵文彬, 朱瑞
作者信息 +

IMPROVED YOLOV5-BASED DEEP LEARNING METHOD FOR DETECTING “HOT SPOT EFFECT” IN PHTOTVOLTAIC MODULES

  • Wang Daolei, Xiao Beicheng, Yao Congrong, Zhao Wenbin, Zhu Rui
Author information +
文章历史 +

摘要

针对光伏组件的热斑检测,提出基于改进YOLOv5的光伏组件热斑检测算法。该算法引入空洞卷积构成的Dilated block替换原来的SPP block,有效减小了池化操作带来的热斑信息损失,提高了网络的感受野。同时在多尺度检测过程中加入通道注意力机制,增强了热斑目标区域的重要性,提高了热斑检测性能。并提出由深度可分离卷积构成的轻量化模块,有效减小了模型参数量,提高了检测速度。实验表明,基于改进YOLOv5网络能实现热斑部位的快速准确检测,此方法的AP较原算法提高1.5%达到98.65%,检测速度较原算法提高25%达到31 帧/s。

Abstract

Aiming at the thermal spot detection of photovoltaic modules, an improved YOLOv5 based thermal spot detection algorithm was proposed. In this algorithm, Dilated block composed of cavity convolution is introduced to replace the original SPP block, which effectively reduces the heat spot information loss caused by pooling operation and improves the receptive field of the network. At the same time, the channel attention mechanism is added to the multi-scale detection process, which enhances the importance of the target region of hot spots and improves the detection performance of hot spots. A Lightweight block module composed of deep separable convolution is proposed, which effectively reduces the number of model parameters and improves the detection speed. The experimental results show that the improved YOLOv5 network can achieve fast and accurate detection of hot spots. Compared with the original algorithm, the AP of this method is increased by 1.5% to 98.65%, and the detection speed is increased by 25% to 31 fps.

关键词

深度学习 / 目标检测 / 光伏组件 / 热斑检测

Key words

deep learning / target detection / photovoltaic modules / hot spot detection

引用本文

导出引用
王道累, 肖贝成, 姚从荣, 赵文彬, 朱瑞. 基于改进YOLOv5的深度学习光伏组件“热斑效应”检测方法[J]. 太阳能学报. 2024, 45(8): 342-348 https://doi.org/10.19912/j.0254-0096.tynxb.2023-0563
Wang Daolei, Xiao Beicheng, Yao Congrong, Zhao Wenbin, Zhu Rui. IMPROVED YOLOV5-BASED DEEP LEARNING METHOD FOR DETECTING “HOT SPOT EFFECT” IN PHTOTVOLTAIC MODULES[J]. Acta Energiae Solaris Sinica. 2024, 45(8): 342-348 https://doi.org/10.19912/j.0254-0096.tynxb.2023-0563
中图分类号: TP183   

参考文献

[1] 唐圣学, 邢玥, 陈丽, 等. 太阳电池组串热斑防治策略研究[J]. 太阳能学报, 2022, 43(4): 226-235.
TANG S X, XING Y, CHEN L, et al.Study on suppressing strategy of hot spot in solar cellseries[J]. Acta energiae solaris sinica, 2022, 43(4): 226-235.
[2] 吴春华, 周笛青, 李智华, 等. 光伏组件热斑诊断及模糊优化控制方法[J]. 中国电机工程学报, 2013, 33(36): 50-61, 9.
WU C H, ZHOU D Q, LI Z H, et al.Hot spot detection and fuzzy optimization control method of PV module[J]. Proceedings of the CSEE, 2013, 33(36): 50-61, 9.
[3] 马铭遥, 张志祥, 刘恒, 等. 基于I-V特性分析的晶硅光伏组件故障诊断[J]. 太阳能学报, 2021, 42(6): 130-137.
MA M Y, ZHANG Z X, LIU H, et al.Fault diagnosis of crystalline silicon photovoltaic module based on I-V characteristic analysis[J]. Acta energiae solaris sinica, 2021, 42(6): 130-137.
[4] 樊涛, 孙涛, 刘虎. 基于注意力机制的光伏组件热斑检测算法[J]. 北京航空航天大学学报, 2022, 48(7): 1304-1313.
FAN T, SUN T, LIU H.Hot spot detection algorithm of photovoltaic module based on attention mechanism[J]. Journal of Beijing University of Aeronautics and Astronautics, 2022, 48(7): 1304-1313.
[5] 孙海蓉, 李号. 基于深度迁移学习的小样本光伏热斑识别方法[J]. 太阳能学报, 2022, 43(1): 406-411.
SUN H R, LI H.Photovoltaic hot spot identification method for small sample based on deep transfer learning[J]. Acta energiae solaris sinica, 2022, 43(1): 406-411.
[6] 王道累, 李超, 李明山, 等. 基于深度卷积神经网络的光伏组件热斑检测[J]. 太阳能学报, 2022, 43(1): 412-417.
WANG D L, LI C, LI M S, et al.Solar photovoltaic modules hot spot detection based on deep convolutional neural networks[J]. Acta energiae solaris sinica, 2022, 43(1): 412-417.
[7] KRIZHEVSKY A, SUTSKEVER I, HINTON G E.ImageNet classification with deep convolutional neural networks[J]. Communications of the ACM, 2017, 60(6): 84-90.
[8] RAZAVIAN A S, AZIZPOUR H, SULLIVAN J, et al.CNN features off-the-shelf: an astounding baseline for recognition[C]//2014 IEEE Conference on Computer Vision and Pattern Recognition Workshops. Columbus, OH, USA, 2014: 512-519.
[9] ROSKA T, CHUA L O.The CNN universal machine: an analogic array computer[J]. IEEE transactions on circuits and systems Ⅱ: analog and digital signal processing, 1993, 40(3): 163-173.
[10] ROSKA T, CHUA L O.The CNN universal machine[J]. Journal of circuits systems & computers, 2008, 12(4): 377-388.
[11] SIMONYAN K, ZISSERMAN A.Very deep convolutional networks for large-scale image recognition[C]//3rd International Conference on Learning Representations. ICLR 2015-conference track proceedings, 2015.
[12] REN S Q, HE K M, GIRSHICK R, et al.Faster R-CNN: towards real-time object detection with region proposal networks[J]. IEEE transactions on pattern analysis and machine intelligence, 2017, 39(6): 1137-1149.
[13] DAI J F, LI Y, HE K M, et al.R-FCN: object detection via region-based fully convolutional networks[C]//Proceedings of the 30th International Conference on Neural Information Processing Systems. Barcelona, Spain, 2016: 379-387.
[14] REDMON J, DIVVALA S, GIRSHICK R, et al.You only look once: unified, real-time object detection[C]//2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). Las Vegas, NV, USA, 2016: 779-788.
[15] LIU W, ANGUELOV D, ERHAN D, et al.SSD: single shot MultiBox detector[C]//European Conference on Computer Vision. Cham: Springer, 2016: 21-37.
[16] YU F, KOLTUN V.Multi-scale context aggregation by dilated convolutions[C]//4rd International Conference on Learning Representations (ICLR 2016). San Juan, Puerto Rico, 2015.
[17] VASWANI A, SHAZEER N, PARMAR N, et al.Attention is all you need[C]//Proceedings of the 31st International Conference on Neural Information Processing Systems. Long Beach, California, USA, 2017: 6000-6010.
[18] REDMON J, FARHADI A.YOLO9000: better, faster, stronger[C]//2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). Honolulu, HI, USA, 2017: 6517-6525.
[19] REDMON J, FARHADI A.YOLOv3: an incremental improvement[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition(CVPR). Salt Lake City, USA, 2018.
[20] BOCHKOVSKIY A, WANG C Y, LIAO H Y M. YOLOv4: optimal speed and accuracy of object detection[EB/OL].2020: arXiv: 2004.10934. http://arxiv.org/abs/2004.10934
[21] HE K M, ZHANG X Y, REN S Q, et al.Spatial pyramid pooling in deep convolutional networks for visual recognition[J]. IEEE transactions on pattern analysis and machine intelligence, 2015, 37(9): 1904-1916.
[22] LIN T Y, DOLLÁR P, GIRSHICK R, et al. Feature pyramid networks for object detection[C]//2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). Honolulu, HI, USA, 2017: 936-944.
[23] HE K M, ZHANG X Y, REN S Q, et al.Deep residual learning for image recognition[C]//2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). Las Vegas, NV, USA, 2016: 770-778.
[24] WANG Q L, WU B G, ZHU P F, et al.ECA-net: efficient channel attention for deep convolutional neural networks[C]//2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). Seattle, WA, USA, 2020: 11531-11539.

基金

国家自然科学基金(12172210; 61502297)

PDF(1561 KB)

Accesses

Citation

Detail

段落导航
相关文章

/