针对传统红外热斑故障检测算法由于特征表达能力不佳造成算法易受复杂背景干扰以及对密集目标、小目标故障检测精度低的问题,提出一种基于高阶空间交互的光伏组件热斑故障检测网络。首先,设计高阶空间交互模块,并将其引入YOLOv5主干网络进行全局交互建模,提升网络对密集目标的检测精度;其次,为突出复杂背景下故障目标的关键特征,设计基于协同注意力的特征提取模块重构颈部网络;然后,在颈部网络设计多尺度特征增强融合模块以提高检测网络对不同尺度特征的充分利用;最后,设计自适应特征融合检测头以提高模型对小目标的感知能力。实验结果表明,相较于7种经典检测算法,所提出的算法检测精度最高,精度可达84.3%。
Abstract
Aiming at the problem of traditional infrared hot spot fault detection algorithm is prone to complex background interference and the low fault detection accuracy of small and dense targets, a photovoltaic module hot spot fault detection network based on high-order spatial interaction is proposed. Firstly, the high-order spatial interaction module is designed, and the YOLOv5 backbone network is introduced for global interaction modeling to improve the detection accuracy of the network. Secondly, in order to highlight the key features of fault targets in complex background, a CCA module is constructed based on the CA to reconstruct the neck network.Then, AFFM module in the neck network is designed to enhance the detection accuracy of the detection network of multi-scales. Finally,the self-adaptive feature fusion detection head is designed to improve the model’s perception of small targets. The experimental results suggest that compared with the seven classical detection algorithms, the proposed algorithm has the highest detection accuracy, reaching 84.3%.
关键词
光伏组件 /
故障检测 /
深度学习 /
热斑效应 /
高阶空间交互 /
特征融合
Key words
PV modules /
fault detection /
deep learning /
hot spot effect /
high-order space interaction /
feature fusion
{{custom_sec.title}}
{{custom_sec.title}}
{{custom_sec.content}}
参考文献
[1] 贾凌云, 云斯宁, 赵泽妮, 等. 神经网络短期光伏发电预测的应用研究进展[J]. 太阳能学报, 2022, 43(12): 88-97.
JIA L Y, YUN S N, ZHAO Z N, et al.Recent progress of short-term forecasting of photovoltaic generation based on artificial neural networks[J]. Acta energiae solaris sinica, 2022, 43(12): 88-97.
[2] POULEK V, ŠAFRÁNKOVÁ J, ČERNÁ L, et al. PV panel and PV inverter damages caused by combination of edge delamination, water penetration, and high string voltage in moderate climate[J]. IEEE journal of photovoltaics, 2021, 11(2): 561-565.
[3] DIMITRIEVSKA V, PITTINO F, MUEHLEISEN W, et al.Statistical methods for degradation estimation and anomaly detection in photovoltaic plants[J]. Sensors, 2021, 21(11): 3733.
[4] 蒋琳, 苏建徽, 施永, 等. 基于红外热图像处理的光伏阵列热斑检测方法[J]. 太阳能学报, 2020, 41(8): 180-184.
JIANG L, SU J H, SHI Y, et al.Hot spots detection of operating PV arrays through IR thermal image[J]. Acta energiae solaris sinica, 2020, 41(8): 180-184.
[5] TANG S X, XING Y, CHEN L, et al.Review and a novel strategy for mitigating hot spot of PV panels[J]. Solar energy, 2021, 214: 51-61.
[6] ČABO F G, MARINIĆ-KRAGIĆ I, GARMA T, et al.Development of thermo-electrical model of photovoltaic panel under hot-spot conditions with experimental validation[J]. Energy, 2021, 230: 120785.
[7] HOSSAIN M K, AHMED M H, KHAN M I, et al.Recent progress of rare earth oxides for sensor, detector, and electronic device applications: a review[J]. ACS applied electronic materials, 2021, 3(10): 4255-4283.
[8] AGHAEI M, GRIMACCIA F, GONANO C A, et al.Innovative automated control system for PV fields inspection and remote control[J]. IEEE transactions on industrial electronics, 2015, 62(11): 7287-7296.
[9] HWANG H P C, KU C C Y, CHAN J C C. Detection of malfunctioning photovoltaic modules based on machine learning algorithms[J]. IEEE access, 2021, 9: 37210-37219.
[10] ALI M U, KHAN H F, MASUD M, et al.A machine learning framework to identify the hotspot in photovoltaic module using infrared thermography[J]. Solar energy, 2020, 208: 643-651.
[11] GIRSHICK R, DONAHUE J, DARRELL T, et al.Region-based convolutional networks for accurate object detection and segmentation[J]. IEEE transactions on pattern analysis and machine intelligence, 2016, 38(1): 142-158.
[12] REN S Q, HE K M, GIRSHICK R, et al.Faster R-CNN: towards real-time object detection with region proposal networks[J]. IEEE transactions on pattern analysis and machine intelligence, 2017, 39(6): 1137-1149.
[13] HUERTA HERRAIZ Á, PLIEGO MARUGÁN A, GARCÍA MÁRQUEZ F P. Photovoltaic plant condition monitoring using thermal images analysis by convolutional neural network-based structure[J]. Renewable energy, 2020, 153: 334-348.
[14] 王道累, 李超, 李明山, 等. 基于深度卷积神经网络的光伏组件热斑检测[J]. 太阳能学报, 2022, 43(1): 412-417.
WANG D L, LI C, LI M S, et al.Solar photovoltaic modules hot spot detection based on deep convolutional neural networks[J]. Acta energiae solaris sinica, 2022, 43(1): 412-417.
[15] REDMON J, DIVVALA S, GIRSHICK R, et al.You only look once: unified, real-time object detection[C]//2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). Las Vegas, NV, USA, 2016: 779-788.
[16] LIU W, ANGUELOV D, ERHAN D, et al.SSD: single shot MultiBox detector[C]//European Conference on Computer Vision. Cham: Springer, 2016: 21-37.
[17] ZHENG Q P, MA J M, LIU M H, et al.Lightweight hot-spot fault detection model of photovoltaic panels in UAV remote-sensing image[J]. Sensors, 2022, 22(12): 4617.
[18] 孙建波, 王丽杰, 麻吉辉, 等. 基于改进YOLO v5s算法的光伏组件故障检测[J]. 红外技术, 2023, 45(2): 202-208.
SUN J B, WANG L J, MA J H, et al.Photovoltaic module fault detection based on improved YOLOv5s algorithm[J]. Infrared technology, 2023, 45(2): 202-208.
[19] 李翔, 张涛, 张哲, 等. Transformer在计算机视觉领域的研究综述[J]. 计算机工程与应用, 2023, 59(1): 1-14.
LI X, ZHANG T, ZHANG Z, et al.Survey of Transformer research in computer vision[J]. Computer engineering and applications, 2023, 59(1): 1-14.
[20] RAO Y M, ZHAO W L, TANG Y S, et al.HorNet: efficient high-order spatial interactions with recursive gated convolutions[J]. Advances in neural information processing systems, 2022, 35: 10353-10366.
[21] HAN K, XIAO A, WU E H, et al.Transformer in transformer[J]. Advances in neural information processing systems, 2021, 34: 15908-15919.
[22] 郝帅, 杨磊, 马旭, 等. 基于注意力机制与跨尺度特征融合的YOLOv5输电线路故障检测[J]. 中国电机工程学报, 2023, 43(6): 2319-2331.
HAO S, YANG L, MA X, et al.YOLOv5 transmission line fault detection based on attention mechanism and cross-scale feature fusion[J]. Proceedings of the CSEE, 2023, 43(6): 2319-2331.
基金
国家自然科学基金(51804250); 中国博士后科学基金(2020M683522)