基于裸土地面的日光温室室内温湿度预测模型构建

陈瑾萱, 杜震宇

太阳能学报 ›› 2024, Vol. 45 ›› Issue (8) : 414-422.

PDF(1174 KB)
欢迎访问《太阳能学报》官方网站,今天是
PDF(1174 KB)
太阳能学报 ›› 2024, Vol. 45 ›› Issue (8) : 414-422. DOI: 10.19912/j.0254-0096.tynxb.2023-0575

基于裸土地面的日光温室室内温湿度预测模型构建

  • 陈瑾萱, 杜震宇
作者信息 +

CONSTRUCTION OF PREDICTON MODEL FOR INDOOR TEMPERATURE AND HUMIDITY IN SOLAR GREENHOUSE BASED ON BARE GROUND SURFACE

  • Chen Jinxuan, Du Zhenyu
Author information +
文章历史 +

摘要

为探究日光温室热湿环境形成机理和规律,认识其内部多物理场耦合的复杂物理现象,根据日光温室的结构特性、外部环境条件等参数,应用传热传质学理论,基于日光温室围护结构内表面热量平衡关系式、空气热量及湿量平衡关系式,考虑墙体湿传递、土壤蒸发等作用建立日光温室室内温湿度预测模型。该模型借助Matlab软件,利用迭代法求解微分方程组得到室内温湿度,并与实验值进行对比及验证分析。结果表明:连续两日内室内空气温度及湿度的预测值与实测数据相对误差分别为5.11%、4.17%;一致性指数分别为0.98、0.94;预测值和实验值之间不存在显著性差异。理论预测值与实验测定值相对误差小,模型一致性高、可靠性强,考虑墙体湿传递和土壤蒸发的影响后可使裸土地面的日光温室室内温湿度的预测模型更加准确。

Abstract

In order to investigate the formation mechanism and law of heat and humidity environment of solar greenhouse, and to recognize the complex physical phenomenon of multi-physical field coupling within it, according to the structural characteristics of the solar greenhouse, external environmental conditions and other parameters, and establish the prediction model of indoor temperature and humidity for solar greenhouse is established based on the equations of the heat balance relationship on the inner surface of the enclosure structure of the solar greenhouse, the equations of the balance relationship of the heat and humidity in the air and the consideration of the role of wall humidity transfer, soil evaporation and so on. The iterative model is used to solve this model to obtain the indoor temperature and humidity with the assistance of Matlab software using iterative method The results are compared and analyzed with the experimental It is found that the relative errors between the predicted and measured data of indoor air temperature and humidity in two consecutive days are 5.11% and 4.17%, respectively; the consistency indices are 0.98 and 0.94, respectively; and there is no significant difference between the predicted and experimental values. The theoretical predicted values and the experimental measured values have small relative errors, and the model is highly consistent and reliable. The prediction model of indoor temperature and humidity in solar greenhouse on bare ground can be more accurate after considering the effects of wall mass transfer and soil evaporation.

关键词

太阳能建筑 / 预测模型 / 墙体 / 湿传递性能 / 日光温室

Key words

solar buildings / prediction models / wall / moisture transmitting properties / solar greenhouse

引用本文

导出引用
陈瑾萱, 杜震宇. 基于裸土地面的日光温室室内温湿度预测模型构建[J]. 太阳能学报. 2024, 45(8): 414-422 https://doi.org/10.19912/j.0254-0096.tynxb.2023-0575
Chen Jinxuan, Du Zhenyu. CONSTRUCTION OF PREDICTON MODEL FOR INDOOR TEMPERATURE AND HUMIDITY IN SOLAR GREENHOUSE BASED ON BARE GROUND SURFACE[J]. Acta Energiae Solaris Sinica. 2024, 45(8): 414-422 https://doi.org/10.19912/j.0254-0096.tynxb.2023-0575
中图分类号: S625   

参考文献

[1] 王洪山, 杨福仓, 王乃仁. 日光温室蔬菜四段变温管理优势及技术[J]. 现代农业科技, 2013(9): 114-115.
WANG H S, YANG F C, WANG N R.Advantages and techniques of four-stage variable temperature management of vegetables in solar greenhouse[J]. Modern agricultural science and technology, 2013(9): 114-115.
[2] 高振波, 赵立强, 毛学辉, 等. 日光温室温度分析模型与模拟[J]. 河北科技师范学院学报, 2007, 21(2): 51-56.
GAO Z B, ZHAO L Q, MAO X H, et al.A temperature model and numerical simulation of sunlight in a greenhouse[J]. Journal of Hebei Normal University of Science & Technology, 2007, 21(2): 51-56.
[3] AHAMED M S, GUO H Q, TANINO K.Modeling heating demands in a Chinese-style solar greenhouse using the transient building energy simulation model TRNSYS[J]. Journal of building engineering, 2020, 29: 101114.
[4] 白广宇, 庄卫东. 基于CFD的多层覆盖一体式日光温室热环境模拟[J]. 农机化研究, 2022, 44(10): 218-221, 227.
BAI G Y, ZHUANG W D.Thermal environment simulation of multi-layer covered integrated solar greenhouse based on CFD[J]. Journal of agricultural mechanization research, 2022, 44(10): 218-221, 227.
[5] ZOU W D, YAO F X, ZHANG B H, et al.Verification and predicting temperature and humidity in a solar greenhouse based on convex bidirectional extreme learning machine algorithm[J]. Neurocomputing, 2017, 249(C): 72-85.
[6] 程陈, 冯利平, 董朝阳, 等. 利用Elman神经网络的华北棚型日光温室室内环境要素模拟[J]. 农业工程学报, 2021, 37(13): 200-208.
CHENG C, FENG L P, DONG C Y, et al.Simulation of inside environmental factors in solar greenhouses using Elman neural network in North China[J]. Transactions of the Chinese Society of Agricultural Engineering, 2021, 37(13): 200-208.
[7] LIU R, LI M, GUZMAN J L, et al.A fast and practical one-dimensional transient model for greenhouse temperature and humidity[J]. Computers and electronics in agriculture, 2021, 186: 106186.
[8] 刘焕, 杨延杰, 史宇亮, 等. 胶东地区日光温室周年温湿度变化规律分析及预测[J]. 中国农业科技导报, 2021, 23(12): 136-144.
LIU H, YANG Y J, SHI Y L, et al.Analysis and prediction on the annual temperature and humidity change of solar greenhouse in Jiaodong area[J]. Journal of agricultural science and technology, 2021, 23(12): 136-144.
[9] ZHANG Y, XU L H, ZHU X H, et al.Thermal environment model construction of Chinese solar greenhouse based on temperature-wave interaction theory[J]. Energy and buildings, 2023, 279: 112648.
[10] LU W, ZHANG Y, FANG H, et al.Modelling and experimental verification of the thermal performance of an active solar heat storage-release system in a Chinese solar greenhouse[J]. Biosystems engineering, 2017, 160: 12-24.
[11] XU W W, GUO H Q, MA C W.An active solar water wall for passive solar greenhouse heating[J]. Applied energy, 2022, 308: 118270.
[12] 邹平, 姜鲁艳, 凌浩恕, 等. 应用于日光温室墙体的相变材料热物性优化研究[J]. 太阳能学报, 2022, 43(9): 139-147.
ZOU P, JIANG L Y, LING H S, et al.Study on optimization of thermophysical properties of phase change materials used in solar greenhouse walls[J]. Acta energiae solaris sinica, 2022, 43(9): 139-147.
[13] 王冬晴, 庄云飞, 张滴滴, 等. 分级相变储放热系统在日光温室中的应用效果[J]. 太阳能学报, 2022, 43(12): 104-111.
WANG D Q, ZHUANG Y F, ZHANG D D, et al.Application effect of graded phase-change heat storage and release system in solar greenhouse[J]. Acta energiae solaris sinica, 2022, 43(12): 104-111.
[14] ZHANG X, WANG H L, ZOU Z R, et al.CFD and weighted entropy based simulation and optimisation of Chinese solar greenhouse temperature distribution[J]. Biosystems engineering, 2016, 142: 12-26.
[15] 孟力力. 基于VB和MATLAB的日光温室热环境模型构建与结构优化[D]. 北京: 中国农业科学院, 2008.
MENG L L.Thermal environment model in Chinese solar greenhouse based on VB and MATLAB and structure optimization[D]. Beijing: Chinese Academy of Agricultural Sciences, 2008.
[16] 何芬, 马承伟, 张俊雄. 温室湿度动态预测模型建立与试验[J]. 农业机械学报, 2009, 40(10): 173-177.
HE F, MA C W, ZHANG J X.Dynamic forecasting model of humidity in greenhouse[J]. Transactions of the Chinese Society for Agricultural Machinery, 2009, 40(10): 173-177.
[17] 谢秋红. 全热回收型日光温室的试验研究与数值分析[D]. 太原: 太原理工大学, 2009.
XIE Q H.Experimental research and numerical analysis of total heat recycling sunlight greenhouse[D]. Taiyuan: Taiyuan University of Technology, 2009.
[18] 杜震宇, 谢秋红, 贾蕾. 日光温室内太阳辐射照度分布的试验研究[J]. 太原理工大学学报, 2010, 41(4): 372-375, 380.
DU Z Y, XIE Q H, JIA L.The experimental study of solar radiation illumination distribution in sunlight greenhouse[J]. Journal of Taiyuan University of Technology, 2010, 41(4): 372-375, 380.
[19] 陶文铨. 数值传热学[M]. 2版. 西安: 西安交通大学出版社, 2001.
TAO W Q.Numerical heat transfer[M]. 2nd ed. Xi’an: Xi’an Jiaotong University Press, 2001.

基金

国家自然科学基金(52278118)

PDF(1174 KB)

Accesses

Citation

Detail

段落导航
相关文章

/