基于优化变分模态分解的光伏功率超短期区间预测方法

李芬, 于淏, 孙改平, 屈爱芳, 刘蓉晖, 赵晋斌

太阳能学报 ›› 2024, Vol. 45 ›› Issue (8) : 367-376.

PDF(1892 KB)
欢迎访问《太阳能学报》官方网站,今天是
PDF(1892 KB)
太阳能学报 ›› 2024, Vol. 45 ›› Issue (8) : 367-376. DOI: 10.19912/j.0254-0096.tynxb.2023-0581

基于优化变分模态分解的光伏功率超短期区间预测方法

  • 李芬1, 于淏1, 孙改平1, 屈爱芳2, 刘蓉晖1, 赵晋斌1
作者信息 +

ULTRA SHORT TERM INTERVAL PREDICTION METHOD OF PHOTOVOLTAIC POWER BASED ON OPTIMAL VARIATIONAL MODE DECOMPOSITION

  • Li Fen1, Yu Hao1, Sun Gaiping1, Qu Aifang2, Liu Ronghui1, Zhao Jinbin1
Author information +
文章历史 +

摘要

针对城市分布式光伏电站在进行超短期功率预测时所需气象资料难以获取,在转折天气下光伏出力不确定性增加的问题,提出一种光伏功率超短期区间预测模型。首先该模型采用麻雀算法优化变分模态分解(VMD),在不同天气下将历史光伏出力分解成多个时序特征强的子模态;其次,通过长短期记忆神经网络LSTM对各子模态分别预测;再次,将各子模态的点预测结果叠加;算例验证结果表明:在各类天气条件下,所提模型相比于单纯使用气象因子的预测方法,具有更高的预测准确度和更强的适应性,同时也能在点预测的基础上提供较为准确的置信区间。

Abstract

To address the challenges faced in obtaining accurate meteorological data, and increasing uncertainty of photovoltaic power output during transitional weather, an ultra-short term interval prediction model for photovoltaic power was proposed. The methodology leverages the Sparrow algorithm to optimize variational mode decomposition (VMD), which decomposes historical PV output into multiple sub-modes with strong temporal characteristics across different weather conditions. Secondly, each submode is predicted by LSTM, and the point prediction results are combined by superimposition. Finally, kernel density estimation was used to construct the error model and obtain ultra-short term interval prediction results for photovoltaic power. Simulation results illustrate that in all kinds of weather conditions, the proposed model has higher prediction accuracy and stronger adaptability than the prediction method using only meteorological factors, and can provide more accurate confidence intervals on the basis of point prediction.

关键词

光伏发电 / 模态分解 / 神经网络 / 长短期记忆 / 核密度估计 / 区间预测

Key words

PV power generation / mode decomposition / neural networks / long short-term memory / kernel density estimation / interval prediction

引用本文

导出引用
李芬, 于淏, 孙改平, 屈爱芳, 刘蓉晖, 赵晋斌. 基于优化变分模态分解的光伏功率超短期区间预测方法[J]. 太阳能学报. 2024, 45(8): 367-376 https://doi.org/10.19912/j.0254-0096.tynxb.2023-0581
Li Fen, Yu Hao, Sun Gaiping, Qu Aifang, Liu Ronghui, Zhao Jinbin. ULTRA SHORT TERM INTERVAL PREDICTION METHOD OF PHOTOVOLTAIC POWER BASED ON OPTIMAL VARIATIONAL MODE DECOMPOSITION[J]. Acta Energiae Solaris Sinica. 2024, 45(8): 367-376 https://doi.org/10.19912/j.0254-0096.tynxb.2023-0581
中图分类号: TM615    P49   

参考文献

[1] 国家能源局发布2023年全国电力工业统计数据[J]. 电力科技与环保, 2024, 40(1): 95.
National Energy Administration releases the statistics of the national electric power industry in 2023[J]. Electric power technology and environmental protection, 2024, 40(1): 95.
[2] 韩冬, 李孟曈, 严正. 用户侧分布式光伏技术扩散能力评估方法[J]. 中国电机工程学报, 2021, 41(3): 985-994.
HAN D, LI M T, YAN Z.Evaluation method of diffusion capability of user-side distributed photovoltaic technology[J]. Proceedings of the CSEE, 2021, 41(3): 985-994.
[3] 夏泠风, 黎嘉明, 赵亮, 等. 考虑光伏电站时空相关性的光伏出力序列生成方法[J]. 中国电机工程学报, 2017, 37(7): 1982-1993.
XIA L F, LI J M, ZHAO L, et al.A PV power time series generating method considering temporal and spatial correlation characteristics[J]. Proceedings of the CSEE, 2017, 37(7): 1982-1993.
[4] SANJARI M J, GOOI H B.Probabilistic forecast of PV power generation based on higher order Markov chain[J]. IEEE transactions on power systems, 2017, 32(4): 2942-2952.
[5] SHENG H M, XIAO J, CHENG Y H, et al.Short-term solar power forecasting based on weighted Gaussian process regression[J]. IEEE transactions on industrial electronics, 2018, 65(1): 300-308.
[6] 黎嘉明, 艾小猛, 文劲宇, 等. 光伏发电功率持续时间特性的概率分布定量分析[J]. 电力系统自动化, 2017, 41(6): 30-36.
LI J M, AI X M, WEN J Y, et al.Quantitative analysis of probability distribution for duration time characteristic of photovoltaic power[J]. Automation of electric power systems, 2017, 41(6): 30-36.
[7] 李芬, 周尔畅, 孙改平, 等. 一种新型天气分型方法及其在光伏功率预测中的应用[J]. 上海交通大学学报, 2021, 55(12): 1510-1519.
LI F, ZHOU E C, SUN G P, et al.A novel weather classification method and its application in photovoltaic power prediction[J]. Journal of Shanghai Jiao Tong University, 2021, 55(12): 1510-1519.
[8] JACKSON N D, GUNDA T.Evaluation of extreme weather impacts on utility-scale photovoltaic plant performance in the United States[J]. Applied energy, 2021, 302: 117508.
[9] SAINT-DRENAN Y M, GOOD G H, BRAUN M, et al. Analysis of the uncertainty in the estimates of regional PV power generation evaluated with the upscaling method[J]. Solar energy, 2016, 135: 536-550.
[10] SHENG H M, XIAO J, CHENG Y H, et al.Short-term solar power forecasting based on weighted Gaussian process regression[J]. IEEE transactions on industrial electronics, 2018, 65(1): 300-308.
[11] YU D, CHOI W, KIM M, et al.Forecasting day-ahead hourly photovoltaic power generation using convolutional self-attention based long short-term memory[J]. Energies, 2020, 13: 4017.
[12] 胡兵, 詹仲强, 陈洁, 等. 基于PCA-GA-Elman的短期光伏出力预测研究[J]. 太阳能学报, 2020, 41(6): 256-263.
HU B, ZHAN Z Q, CHEN J, et al.Prediction research on short-term photovoltaic output based on PCA-GA-Elman[J]. Acta energiae solaris sinica, 2020, 41(6): 256-263.
[13] LI F F, WANG S Y, WEI J H.Long term rolling prediction model for solar radiation combining empirical mode decomposition (EMD) and artificial neural network (ANN) techniques[J]. Journal of renewable and sustainable energy, 2018, 10: 013704.
[14] 王振浩, 王翀, 成龙, 等. 基于集合经验模态分解和深度学习的光伏功率组合预测[J]. 高电压技术, 2022, 48(10): 4133-4142.
WANG Z H, WANG C, CHENG L, et al.Photovoltaic power combined prediction based on ensemble empirical mode decomposition and deep learning[J]. High voltage engineering, 2022, 48(10): 4133-4142.
[15] 王福忠, 王帅峰, 张丽. 基于VMD-LSTM与误差补偿的光伏发电超短期功率预测[J]. 太阳能学报, 2022, 43(8): 96-103.
WANG F Z, WANG S F, ZHANG L.Ultra short term power prediction of photovoltaic power generation based on VMD-LSTM and error compensation[J]. Acta energiae solaris sinica, 2022, 43(8): 96-103.
[16] 杨晶显, 张帅, 刘继春, 等. 基于VMD和双重注意力机制LSTM的短期光伏功率预测[J]. 电力系统自动化, 2021, 45(3): 174-182.
YANG J X, ZHANG S, LIU J C, et al.Short-term photovoltaic power prediction based on variational mode decomposition and long shortterm memory with dual-stage attention mechanism[J]. Automation of electric power systems, 2021, 45(3): 174-182.
[17] 叶林, 裴铭, 路朋, 等. 基于天气分型的短期光伏功率组合预测方法[J]. 电力系统自动化, 2021, 45(1): 44-54.
YE L, PEI M, LU P, et al.Combination forecasting method of short-term photovoltaic power based on weather classification[J]. Automation of electric power systems, 2021, 45(1): 44-54.
[18] 王育飞, 付玉超, 孙路, 等. 基于混沌-RBF神经网络的光伏发电功率超短期预测模型[J]. 电网技术, 2018, 42(4): 1110-1116.
WANG Y F, FU Y C, SUN L, et al.Ultra-short term prediction model of photovoltaic output power based on chaos-RBF neural network[J]. Power system technology, 2018, 42(4): 1110-1116.
[19] 董雪, 赵宏伟, 赵生校, 等. 基于SOM聚类和二次分解的BiGRU超短期光伏功率预测[J]. 太阳能学报, 2022, 43(11): 85-93.
DONG X, ZHAO H W, ZHAO S X, et al.Ultra-short-term forecasting method of photovoltaic power based on SOM clustering, secondary decomposition and BiGRU[J]. Acta energiae solaris sinica, 2022, 43(11): 85-93.
[20] 黄雨薇, 彭道刚, 姚峻, 等. 基于SSA和K均值的TD-BP神经网络超短期光伏功率预测[J]. 太阳能学报, 2021, 42(4): 229-238.
HUANG Y W, PENG D G, YAO J, et al.Ultra-short-term photovoltaic power forecast of TD-BP neural network based on SSA and K-means[J]. Acta energiae solaris sinica, 2021, 42(4): 229-238.
[21] 孙朋杰, 陈正洪, 成驰, 等. 一种改进的太阳辐射MOS预报模型研究[J]. 太阳能学报, 2015, 36(12): 3048-3053.
SUN P J, CHEN Z H, CHENG C, et al.Improved MOS model for solar radiation forecasting[J]. Acta energiae solaris sinica, 2015, 36(12): 3048-3053.
[22] RAZAGUI A, ABDELADIM K, SEMAOUI S, et al.Modeling the forecasted power of a photovoltaic generator using numerical weather prediction and radiative transfer models coupled with a behavioral electrical model[J]. Energy reports, 2020, 6: 57-62.
[23] 柴闵康, 夏飞, 张浩, 等. 基于云图特征自识别的光伏超短期预测模型[J]. 电网技术, 2021, 45(3): 1023-1035.
CHAI M K, XIA F, ZHANG H, et al.Ultra-short-term prediction of self-identifying photovoltaic based on sky cloud chart[J]. Power system technology, 2021, 45(3): 1023-1035.
[24] YUFEI W, FU Y C, XUE H.Improved prediction method of PV output power based on optimised chaotic phase space reconstruction[J]. Renewable power generation, 2020, 14(11): 1831-1840.
[25] 万灿, 宋永华. 新能源电力系统概率预测理论与方法及其应用[J]. 电力系统自动化, 2021, 45(1): 2-16.
WAN C, SONG Y H.Theories, methodologies and applications of probabilistic forecasting for power systems with renewable energy sources[J]. Automation of electric power systems, 2021, 45(1): 2-16.
[26] XUE J K, SHEN B.A novel swarm intelligence optimization approach: sparrow search algorithm[J]. Systems science and control engineering, 2020, 8(1): 22-34.
[27] LIU R H, WEI J C, SUN G P, et al.A short-term probabilistic photovoltaic power prediction method based on feature selection and improved LSTM neural network[J]. Electric power systems research, 2022, 210: 108069.
[28] MARKOVICS D, MAYER M J.Comparison of machine learning methods for photovoltaic power forecasting based on numerical weather prediction[J]. Renewable and sustainable energy reviews, 2022, 161: 112364.
[29] CHEN L, TANG D H, CHEN L, et al.Photovoltaic power prediction method based on fluctuating weather identification[C]//2022 6th International Conference on Power and Energy Engineering (ICPEE). Shanghai, China, 2022: 67-71.

基金

国家自然科学基金(12071298); 西藏自治区科技计划(XZ202101ZD0015G)

PDF(1892 KB)

Accesses

Citation

Detail

段落导航
相关文章

/