静止坐标系下无电网电压传感器虚拟同步机控制策略

张斌, 韦甘, 王鑫达, 张相军, 杨华, 张学广

太阳能学报 ›› 2024, Vol. 45 ›› Issue (8) : 174-181.

PDF(2530 KB)
欢迎访问《太阳能学报》官方网站,今天是
PDF(2530 KB)
太阳能学报 ›› 2024, Vol. 45 ›› Issue (8) : 174-181. DOI: 10.19912/j.0254-0096.tynxb.2023-0587

静止坐标系下无电网电压传感器虚拟同步机控制策略

  • 张斌1, 韦甘1, 王鑫达2, 张相军1, 杨华1, 张学广1
作者信息 +

GRID VOLTAGE SENSORLESS VSG CONTROL STRATEGY BASED ON STATIC COORDINATE SYSTEM

  • Zhang Bin1, Wei Gan1, Wang Xinda2, Zhang Xiangjun1, Yang Hua1, Zhang Xueguang1
Author information +
文章历史 +

摘要

针对采用虚拟磁链算法的无电网电压传感器存在的直流偏移等问题,提出基于一阶低通滤波器和高通滤波器串联结构的改进磁链观测器,利用改进的磁链观测器得出虚拟磁链,提高了观测的精度。在得到虚拟磁链的基础上,针对不同电网频率运行条件,利用锁相环思想提出电网角频率的计算结构,并由虚拟出的磁链与电压的关系来重构电网电压。此外,将所提无电网电压传感器策略应用于网侧变流器系统中,在两相静止坐标系下设计虚拟同步控制结构,相比于旋转坐标系,可省去控制内环的解耦环节,同时还能简化坐标变换环节,避免了因坐标变换中角度不准而引入的不稳定因素。最后,通过仿真与实验验证所提控制策略与磁链观测器的有效性与可靠性。

Abstract

This paper proposes an improved flux observer based on a series structure of a first order low-pass filter and a high pass filter to solve the DC offset problem of grid voltage sensorless strategy using the virtual flux algorithm, by utilizing this improved flux observer to derive the virtual flux, the precision of observation is enhanced. Based on the virtual flux obtained, a calculation structure of grid angular frequency is proposed using the idea of phase locked loop for different grid frequency operating conditions, and the grid voltage is reconstructed from the relationship between the virtual flux and voltage. In addition, the proposed grid voltage sensorless strategy is applied to the grid side converter system, and a virtual synchronous control structure is designed in a two-phase static coordinate system. Compared to a rotating coordinate system, the decoupling process of the control inner loop can be omitted, while the coordinate transformation process can be simplified, avoiding the instability factors caused by inaccurate angles in coordinate transformation. Finally, simulation and experiments verify the effectiveness and reliability of the proposed control strategy and flux observer.

关键词

变流器 / 磁链 / 无传感器控制 / 虚拟同步控制 / 静止坐标系

Key words

power converters / flux linkage / sensorless control / virtual synchronous control / static coordinate system

引用本文

导出引用
张斌, 韦甘, 王鑫达, 张相军, 杨华, 张学广. 静止坐标系下无电网电压传感器虚拟同步机控制策略[J]. 太阳能学报. 2024, 45(8): 174-181 https://doi.org/10.19912/j.0254-0096.tynxb.2023-0587
Zhang Bin, Wei Gan, Wang Xinda, Zhang Xiangjun, Yang Hua, Zhang Xueguang. GRID VOLTAGE SENSORLESS VSG CONTROL STRATEGY BASED ON STATIC COORDINATE SYSTEM[J]. Acta Energiae Solaris Sinica. 2024, 45(8): 174-181 https://doi.org/10.19912/j.0254-0096.tynxb.2023-0587
中图分类号: TM46   

参考文献

[1] 刘辉, 孙大卫, 宋鹏, 等. 电压环对光伏虚拟同步机系统稳定性的影响[J]. 太阳能学报, 2021, 42(3): 311-318.
LIU H, SUN D W, SONG P, et al.Influence of voltage loop on stability of photovoltaic virtual synchronous gen erators[J]. Acta energiae solaris sinica, 2021, 42(3): 311-318.
[2] LISERRE M, WANG X F.Guest editorial: special section on modeling, topology, and control of grid-forming inverters[J]. IEEE journal of emerging and selected topics in power electronics, 2020, 8(2): 923-924.
[3] PAN D H, WANG X F, LIU F C, et al.Transient stability of voltage-source converters with grid-forming control: a design-oriented study[J]. IEEE journal of emerging and selected topics in power electronics, 2020, 8(2): 1019-1033.
[4] CHEN M, ZHOU D, BLAABJERG F.Active power oscillation damping based on acceleration control in paralleled virtual synchronous generators system[J]. IEEE transactions on power electronics, 2021, 36(8): 9501-9510.
[5] HE Y, HU H M, YANG H D, et al.VSG parallel control strategy based on secondary voltage regulation[C]//2022 7th Asia Conference on Power and Electrical Engineering (ACPEE). Hangzhou, China, 2022: 1562-1567.
[6] YU Y, CHAUDHARY S K, TINAJERO G D A, et al. A reference-feedforward-based damping method for virtual synchronous generator control[J]. IEEE transactions on power electronics, 2022, 37(7): 7566-7571.
[7] 张思缘. 三相电压源型变流器的稳定性分析与模式切换控制[D]. 哈尔滨: 哈尔滨工业大学, 2021.
ZHANG S Y.Stability analysis of three-phase voltage source converters and switching control of mode[D]. Harbin: Harbin Institute of Technology, 2021.
[8] KAZEM BAKHSHIZADEH M, WANG X F, BLAABJERG F, et al.Couplings in phase domain impedance modeling of grid-connected converters[J]. IEEE transactions on power electronics, 2016, 31(10): 6792-6796.
[9] 杨明, 高龙将, 王海星, 等. 电网不平衡下虚拟同步发电机功率-电流协调控制策略[J]. 电力系统保护与控制, 2019, 47(6): 17-23.
YANG M, GAO L J, WANG H X, et al.Coordinate control of power and current for virtual synchronous generator under unbalanced grid voltage[J]. Power system protection and control, 2019, 47(6): 17-23.
[10] ZHOU B K, HE Y C, ZOU Y T, et al.An inner-loop control method for the filter-less, voltage sensor-less, and PLL-less grid-following inverter-based resource[C]//2022 IEEE Applied Power Electronics Conference and Exposition (APEC), Houston, TX, USA, 2022: 1425-1429.
[11] TRAN T V, KIM K H, LAI J S.Optimized active disturbance rejection control with resonant extended state observer for grid voltage sensorless LCL-filtered inverter[J]. IEEE transactions on power electronics, 2021, 36(11): 13317-13331.
[12] 熊成林, 宋智威, 黄路, 等. 基于谐波补偿的单相PWM整流器虚拟磁链模型预测算法[J]. 电机与控制学报, 2020, 24(11): 93-101.
XIONG C L, SONG Z W, HUANG L, et al.A virtual-flux-linkage model predictive control of single-phase PWM rectifier based on harmonic compensation[J]. Electric machines and control, 2020, 24(11): 93-101.
[13] ZHANG Y C, WANG Z T, JIAO J, et al.Grid-voltage sensorless model predictive control of three-phase PWM rectifier under unbalanced and distorted grid voltages[J]. IEEE transactions on power electronics, 2020, 35(8): 8663-8672.
[14] ZHANG H, ZHU X X, SHI J C, et al.Study on PWM rectifier without grid voltage sensor based on virtual flux delay compensation algorithm[J]. IEEE transactions on power electronics, 2019, 34(1): 849-862.
[15] ANDRADE PEREIRA W C, RODRIGUES OLIVEIRA C M, PATRICIO SANTANA M, et al. Improved sensorless vector control of induction motor using sliding mode observer[J]. IEEE Latin America transactions, 2016, 14(7): 3110-3116.
[16] DANG C L, WANG F, TONG X Q, et al.An improved voltage sensorless model predictive direct power control for Vienna rectifier[C]//2021 IEEE 1st International Power Electronics and Application Symposium(PEAS). Shanghai, China, 2021: 1-6.
[17] 张飞鸽, 张文娟, 杜平. 电网畸变下两相静止坐标系的改进同步信号检测方法[J]. 太阳能学报, 2020, 41(5): 302-311.
ZHANG F G, ZHANG W J, DU P.Improved method of synchronization signal extraction in two-phase stationary reference frame under grid distortion[J]. Acta energiae solaris sinica, 2020, 41(5): 302-311.
[18] TARRASO A, LAI N B, RODRIGUEZ P.Synchronous fault compensator for voltage sensorless grid-following power converters[C]//2021 IEEE 12th International Symposium on Power Electronics for Distributed Generation Systems (PEDG). Chicago, IL, USA, 2021: 1-5.
[19] CHEN X T, WU W M, GAO N, et al.Finite control set model predictive control for LCL-filtered grid-tied inverter with minimum sensors[J]. IEEE transactions on industrial electronics, 2020, 67(12): 9980-9990.
[20] TARRASO A, LAI N B, BALTAS G N, et al.Voltage sensorless grid-forming power converters[C]//2020 IEEE 21st Workshop on Control and Modeling for Power Electronics (COMPEL). Aalborg, Denmark, 2020: 1-5.

基金

国家自然科学基金(51977046)

PDF(2530 KB)

Accesses

Citation

Detail

段落导航
相关文章

/