四邻位偶氮苯分子的储能性能研究

江艳, 黄金, 罗文

太阳能学报 ›› 2024, Vol. 45 ›› Issue (8) : 10-16.

PDF(1309 KB)
欢迎访问《太阳能学报》官方网站,今天是
PDF(1309 KB)
太阳能学报 ›› 2024, Vol. 45 ›› Issue (8) : 10-16. DOI: 10.19912/j.0254-0096.tynxb.2023-0588

四邻位偶氮苯分子的储能性能研究

  • 江艳1,2, 黄金2,3, 罗文2
作者信息 +

RESEARCH ON ENERGY STORAGE PERFORMANCE OF TETRA-ORTHO-AZOBENZENE MOLECULES

  • Jiang Yan1,2, Huang Jin2,3, Luo Wen2
Author information +
文章历史 +

摘要

基于光响应化合物的分子太阳能储存技术是一种独特的太阳能热转换和储存技术,以所合成的四邻位偶氮苯分子为研究对象,通过实验研究的方法,对该偶氮苯分子的异构化性能、储能性能和稳定性进行实验研究。研究结果表明:四邻位偶氮苯分子在红光、绿光和紫外光激发下能发生异构化现象,在室温下其回复半衰期为70 min,在红光、绿光和紫外光照射后的异构化程度分别为28%、41%和59%。四邻位偶氮苯分子在异构化程度为100%时,其储能密度为37.88 kJ/mol。此外,四邻位偶氮苯分子展现出优异的循环性和热稳定性。

Abstract

Molecular solar energy storage technology based on photoresponsive compounds is a unique solar thermal conversion and storage technology. The isomerization performance, energy storage performance and stability of the synthesized tetra-ortho azobenzene molecule were studied experimentally. The results show that the tetra-ortho-azobenzene molecule can undergo isomerization under red, green and ultraviolet light excitation, and its half-life is 70 min at room temperature. The degree of isomerization after red, green and ultraviolet light irradiation is 28%, 41% and 59%, respectively. When the isomerization degree of the tetra-ortho-azobenzene molecule is 100%, its energy storage density is 37.88 kJ/mol. In addition, the tetra-ortho azobenzene molecule exhibits excellent cycle performance and thermal stability.

关键词

储能 / 太阳能 / 偶氮苯 / 异构化 / 循环稳定性 / 热稳定性

Key words

storage / solar energy / azobenzene / isomerization / cycling stability / thermal stability

引用本文

导出引用
江艳, 黄金, 罗文. 四邻位偶氮苯分子的储能性能研究[J]. 太阳能学报. 2024, 45(8): 10-16 https://doi.org/10.19912/j.0254-0096.tynxb.2023-0588
Jiang Yan, Huang Jin, Luo Wen. RESEARCH ON ENERGY STORAGE PERFORMANCE OF TETRA-ORTHO-AZOBENZENE MOLECULES[J]. Acta Energiae Solaris Sinica. 2024, 45(8): 10-16 https://doi.org/10.19912/j.0254-0096.tynxb.2023-0588
中图分类号: TK02   

参考文献

[1] 娄尚, 朱群志, 李琛, 等. 基于相变材料的双通道PV/T系统性能研究[J]. 太阳能学报, 2022, 43(9): 98-103.
LOU S, ZHU Q Z, LI C, et al.Performance of a dual-channel PV/T integrated system based on phase change materials[J]. Acta energiae solaris sinica, 2022, 43(9): 98-103.
[2] 张沛晔, 穆瑞琪, 刘明, 等. 太阳能热利用系统能势匹配程度的对比分析[J]. 太阳能学报, 2022, 43(9): 119-124.
ZHANG P Y, MU R Q, LIU M, et al.Energy potentialanalysis of solar thermal energy utilization system[J]. Acta energiae solaris sinica, 2022, 43(9): 119-124.
[3] 陈泽泓, 糜又晚, 杜广瀚, 等. 太阳能热发电熔盐槽式集热回路流量分配特性研究[J]. 太阳能学报, 2023, 44(3): 516-524.
CHEN Z H, MI Y W, DU G H, et al.Flow distribution performance research on solar field of molten salt parabolic trough solar power plants[J]. Acta energiae solaris sinica, 2023, 44(3): 516-524.
[4] DONG L Q, FENG Y Y, WANG L, et al.Azobenzene-based solar thermal fuels: design, properties, and applications[J]. Chemical society reviews, 2018, 47(19): 7339-7368.
[5] HU J, HUANG S, YU M M, et al.Flexible solar thermal fuel devices: composites of fabric and a photoliquefiable azobenzene derivative[J]. Advanced energy materials, 2019, 9(37): 1901363.
[6] HE Y X, SHANGGUAN Z C, ZHANG Z Y, et al.Azobispyrazole family as photoswitches combining (near‐) quantitative bidirectional isomerization and widely tunable thermal half‐lives from hours to years[J]. Angewandte chemie international edition, 2021, 60(30): 16539-16546.
[7] HUANG X H, SHANGGUAN Z C, ZHANG Z Y, et al.Visible-light-induced reversible photochemical crystal-liquid transitions of Azo-switches for smart and robust adhesives[J]. Chemistry of materials, 2022, 34(6): 2636-2644.
[8] HAN G G D, DERU J H, CHO E N, et al. Optically-regulated thermal energy storage in diverse organic phase-change materials[J]. Chemical communications, 2018, 54(76): 10722-10725.
[9] WANG Z H, LOSANTOS R, SAMPEDRO D, et al.Demonstration of an azobenzene derivative based solar thermal energy storage system[J]. Journal of materials chemistry A, 2019, 7(25): 15042-15047.
[10] LIU H, TANG J W, DONG QL, et al.Optically triggered synchronous heat release of phase‐change enthalpy and photo‐thermal energy in phase‐change materials at low temperatures[J]. Advanced functional materials, 2021, 31(6): 2008496.
[11] XU X, WANG G.Molecular solar thermal systems towards phase change and visible light photon energy storage[J]. Small, 2022, 18(16): 2107473.
[12] LUO W, FENG Y Y, QIN C Q, et al.High-energy, stable and recycled molecular solar thermal storage materials using AZO/graphene hybrids by optimizing hydrogen bonds[J]. Nanoscale, 2015, 7(39): 16214-16221.
[13] LI M, WANG C C.AAZO-Graphene composite phase change materials with Photo-thermal conversion performance[J]. Solar energy, 2021, 223: 11-18.
[14] YANG X Y, LI S J, ZHAO J G, et al.Visible light driven low temperature photoactive energy storage materials for high rate thermal output system[J]. Solar energy materials and solar cells, 2021, 231: 111330.
[15] HUANG J, JIANG Y, WANG J, et al.A high energy, reusable and daily-utilization molecular solar thermal conversion and storage material based on azobenzene/multi-walled carbon nanotubes hybrid[J]. Thermochimica acta, 2017, 657: 163-169.
[16] JIANG Y, HUANG J, FENG W, et al.Molecular regulation of nano-structured solid-state AZO-SWCNTs assembly film for the high-energy and short-term solar thermal storage[J]. Solar energy materials and solar cells, 2019, 193: 198-205.
[17] HAN G D, PARK S S, LIU Y, et al.Photon energy storage materials with high energy densities based on diacetylene-azobenzene derivatives[J]. Journal of materials chemistry A, 2016, 4(41): 16157-16165.
[18] ZHITOMIRSKY D, CHO E, Grossman J C.Solid‐state solar thermal fuels for heat release applications[J]. Advanced energy materials, 2016, 6(6): 1502006.
[19] SAYDJARI A K, WEIS P, WU S.Spanning the solar spectrum: azopolymer solar thermal fuels for simultaneous UV and visible light storage[J]. Advanced energy materials, 2017, 7(3): 1601622.
[20] 洪立水, 黄金, 胡艳鑫, 等. 基于太阳能储能材料的偶氮苯化合物性能研究[J]. 太阳能学报, 2017, 38(7): 1761-1766.
HONG L S, HUANG J, HU Y X, et al.Performance study of azobenzene compounds based on material for solar energy storage[J]. Acta energiae solaris sinica, 2017, 38(7): 1761-1766.
[21] SHI Y R, GERKMAN M A, QIU Q F, et al.Sunlight-activated phase change materials for controlled heat storage and triggered release[J]. Journal of materials chemistry A, 2021, 9(15): 9798-9808.
[22] SUN S D, LIANG S F, XU W C, et al.Photoswitches with different numbers of azo chromophores for molecular solar thermal storage[J]. Soft matter, 2022, 18(46): 8840-8849.
[23] KNIE C, UTECHT M, ZHAO F L, et al.Ortho‐fluoroazobenzenes: visible light switches with very long‐lived z isomers[J]. Chemistry-a european journal, 2014, 20(50): 16492-16501.
[24] BEHARRY A A, SADOVSKI O, WOOLLEY G A.Azobenzene photoswitching without ultraviolet light[J]. Journal of the American Chemical Society, 2011, 133(49): 19684-19687.
[25] SAMANTA S, BEHARRY A A, SADOVSKI O, et al.Photoswitching azo compounds in vivo with red light[J]. Journal of the American Chemical Society, 2013, 135(26): 9777-9784.
[26] KONRAD D B, SAVASCI G, ALLMENDINGER L, et al.Computational design and synthesis of a deeply red-shifted and bistable azobenzene[J]. Journal of the American Chemical Society, 2020, 142(14): 6538-6547.
[27] 徐兴堂. 树枝状偶氮苯类光储热材料的制备及性能研究[D]. 北京: 北京科技大学, 2022.
XU X T.Preparation and properties of azobenzene-containing dendrimer solar thermal storage materials[D]. Beijing: University of Science and Technology Beijing, 2022.
[28] KWARIA D, MCGEHEE K, LIU S, et al.Visible-light-photomeltable azobenzenes as solar thermal fuels[J]. ACS applied optical materials, 2023, 1(2): 633-639.
[29] WANG D S, WU S.Red-light-responsive supramolecular valves for photocontrolled drug release from mesoporous nanoparticles[J]. Langmuir, 2016, 32(2): 632-636.
[30] WEIS P, WANG D S, WU S.Visible-light-responsive azopolymers with inhibited π-π stacking enable fully reversible photopatterning[J]. Macromolecules, 2016, 49(17): 6368-6373.
[31] WANG D S, WAGNER M, BUTT H J, et al.Supramolecular hydrogels constructed by red-light-responsive host-guest interactions for photo-controlled protein release in deep tissue[J]. Soft matter, 2015, 11(38): 7656-7662.
[32] MASUTANI, K, MORIKAWA M A, KIMIZUKA N.A liquid azobenzene derivative as a solvent-free solar thermal fuel[J]. Chemical communications, 2014, 50(99): 15803-15806.
[33] WANG G J, YUAN D, YUAN T T, et al.A visible light responsive azobenzene-functionalized polymer: synthesis, self‐assembly, and photoresponsive properties[J]. Journal of polymer science part A: polymer chemistry, 2015, 53(23): 2768-2775.
[34] MORIKAWA M A, YAMANAKA Y, KIMIZUKA N.Liquid bisazobenzenes as molecular solar thermal fuel with enhanced energy density[J]. Chemistry letters, 2022, 51(4): 402-406.
[35] LUO W, FENG Y Y, CAO C, et al.A high energy density azobenzene/graphene hybrid: a nano-templated platform for solar thermal storage[J]. Journal of materials chemistry A, 2015, 3(22): 11787-11795.
[36] CHO E N, ZHITOMIRSKY D, HAN G G D, et al. Molecularly engineered azobenzene derivatives for high energy density solid-state solar thermal fuels[J]. ACS applied materials & interfaces, 2017, 9(10): 8679-8687.
[37] YAMADA S, BESSHO J, NAKASATO H, et al.Color tuning donor-acceptor-type azobenzene dyes by controlling the molecular geometry of the donor moiety[J]. Dyes and pigments, 2018, 150: 89-96.

基金

广东省基础与应用基础研究基金(2022A1515110775); 广东省普通高校青年创新人才项目(2020KQNCX094); 肇庆学院科研资金助项目(190128)

PDF(1309 KB)

Accesses

Citation

Detail

段落导航
相关文章

/