粉质黏土中缩径单桩静压沉桩阻力数值模拟研究

赵昊, 邱旭, 李会, 马文冠, 闫姝

太阳能学报 ›› 2024, Vol. 45 ›› Issue (9) : 458-464.

PDF(1817 KB)
欢迎访问《太阳能学报》官方网站,今天是
PDF(1817 KB)
太阳能学报 ›› 2024, Vol. 45 ›› Issue (9) : 458-464. DOI: 10.19912/j.0254-0096.tynxb.2023-0590

粉质黏土中缩径单桩静压沉桩阻力数值模拟研究

  • 赵昊, 邱旭, 李会, 马文冠, 闫姝
作者信息 +

NUMERICAL RESEARCH ON STATIC SEDIMENTATION FOR REDUCED DIANETER MOMOPILE FOUNDATION IN SILTY CLAY

  • Zhao Hao, Qiu Xu, Li Hui, Ma Wenguan, Yan Shu
Author information +
文章历史 +

摘要

室内缩尺试验较难真实还原其沉桩特性,原型试验又较为耗时,基于耦合的欧拉-拉格朗日(CEL)数值分析方法可实现原比尺模型静压沉放过程模拟,且可直观获得桩-土相互作用过程。通过室内试验进行沉桩阻力的有限元方法验证,并将有限元法用于工程体型沉桩过程模拟与阻力计算;数值模拟结果表明,缩径段的体型设计使沉桩阻力增加,EVF云图可看出进入桩内土体的体积减少,使桩内出现泥面降低的情况;最后,研究不同缩径段尺寸对于沉桩阻力的影响。

Abstract

Reduced diameter monopile, as an emerging type of supporting structure for offshore wind turbines, it is very significant for engineering applications to calculate the sinking resistance of this stage. The laboratory scale test is difficult to truly restore the sinking characteristics, and the prototype test is time-consuming and labor-intensive. The Coupled Eulerian-Lagrangian (CEL) numerical analysis method can realize the static sedimentation process simulation of the original scale foundation. Based on the experiment results, the CEL numerical method is validated and applied to a simulation of an engineering prototype. The numerical simulation results show that the reduced diameter design increases the pile sinking resistance, and the EVF cloud image shows that the volume of soil entering the pile decreases, resulting in the reduction of the mud surface inside the pile. Finally, the influence of different sizes of reduced diameter monopiles on pile sinking resistance is studied.

关键词

海上风电场 / 海上风力发电机 / 海上风电结构 / 缩径单桩基础 / 沉桩阻力

Key words

offshore wind farms / offshore wind turbines / offshore structures / reduced diameter monopile / pile sinking resistance

引用本文

导出引用
赵昊, 邱旭, 李会, 马文冠, 闫姝. 粉质黏土中缩径单桩静压沉桩阻力数值模拟研究[J]. 太阳能学报. 2024, 45(9): 458-464 https://doi.org/10.19912/j.0254-0096.tynxb.2023-0590
Zhao Hao, Qiu Xu, Li Hui, Ma Wenguan, Yan Shu. NUMERICAL RESEARCH ON STATIC SEDIMENTATION FOR REDUCED DIANETER MOMOPILE FOUNDATION IN SILTY CLAY[J]. Acta Energiae Solaris Sinica. 2024, 45(9): 458-464 https://doi.org/10.19912/j.0254-0096.tynxb.2023-0590
中图分类号: TU432   

参考文献

[1] 朱蓉, 徐红, 龚强, 等. 中国风能开发利用的风环境区划[J]. 太阳能学报, 2023, 44(3): 55-66.
ZHU R, XU H, GONG Q, et al.Wind environmental regionalization for development and utilization of wind energy in China[J]. Acta energiae solaris sinica, 2023, 44(3): 55-66.
[2] 林逸凡, 杨梓豪, 刘玉飞, 等. 中国沿海风电施工窗口期及功效分析[J]. 太阳能学报, 2023, 44(1): 273-280.
LIN Y F, YANG Z H, LIU Y F, et al.Analysis of weather window and construction efficiency for wind power development in offshore China[J]. Acta energiae solaris sinica, 2023, 44(1): 273-280.
[3] 张双益, 李熙晨. 气候变化背景下未来中国近海风能资源预估[J]. 太阳能学报, 2022, 43(1): 29-35.
ZHANG S Y, LI X C.Future projection of wind energy resources over China's offshore areas under different climate change scenarios[J]. Acta energiae solaris sinica, 2022, 43(1): 29-35.
[4] COLIN W.Offshore wind in Europe 2021: key trends and statistics[R]. WindEurope, 2022.
[5] 方焘, 刘新荣, 耿大新, 等. 大直径变径桩竖向承载特性模型试验研究(Ⅰ)[J]. 岩土力学, 2012, 33(10): 2947-2952.
FANG T, LIU X R, GENG D X, et al.Model testing study of vertical bearing behaviors for large diameter pile with variable cross-section (Ⅰ)[J]. Rock and soil mechanics, 2012, 33(10): 2947-2952.
[6] 刘新荣, 方焘, 耿大新, 等. 大直径变径桩横向承载特性模型试验[J]. 中国公路学报, 2013, 26(6): 80-86, 190.
LIU X R, FANG T, GENG D X, et al.Model test on lateral bearing behaviors of large diameter pile with variable cross section[J]. China journal of highway and transport, 2013, 26(6): 80-86, 190.
[7] 杨国权, 刘海波. 锤击法与静压法施工预制桩单桩承载力差异分析[J]. 探矿工程(岩土钻掘工程), 2009, 36(3): 53-56.
YANG G Q, LIU H B.Analysis on the difference of prefabricated single pile bearing capacity between construction by hammer-driven and static-pressure[J]. Exploration engineering (rock & soil drilling and tunneling), 2009, 36(3): 53-56.
[8] 刘润, 闫澍旺. 大直径超长桩打桩过程中桩周土体的疲劳与强度恢复[J]. 岩土力学, 2009, 30(2): 452-456.
LIU R, YAN S W.Research on soil fatigue and restoration during deep penetration large diameter pile driving[J]. Rock and soil mechanics, 2009, 30(2): 452-456.
[9] 李飒, 蒋衍洋, 周扬锐, 等. 大直径钢管桩打桩振动对粘土土阻力的影响[J]. 土木建筑与环境工程, 2012, 34(2): 46-51.
LI S, JIANG Y Y, ZHOU Y R, et al.Influence of pile driving on soil resistance in clay[J]. Journal of civil, architectural & environmental engineering, 2012, 34(2): 46-51.
[10] 宋云峰, 王小合, 逯鹏, 等. 海上风电场单桩基础施工关键技术研究[J]. 工程技术研究, 2021, 6(23): 24-26.
SONG Y F, WANG X H, LU P, et al.Research on key technologies of single pile foundation construction in offshore wind farm[J]. Engineering and technological research, 2021, 6(23): 24-26.
[11] 李雄, 刘金砺. 饱和软土中预制桩承载力时效的研究[J]. 岩土工程学报, 1992, 14(4): 9-16.
LI X, LIU J L.Time effect of bearing capacity of driven pile in saturated soft soil[J]. Chinese journal of geotechnical engineering, 1992, 14(4): 9-16.
[12] 张明义, 时伟, 王崇革, 等. 静压桩极限承载力的时效性[J]. 岩石力学与工程学报, 2002, 21(S2): 2601-2604.
ZHANG M Y, SHI W, WANG C G, et al.Timeliness of ultimate bearing capacity of static pressure pile[J]. Chinese journal of rock mechanics and engineering, 2002, 21(S2): 2601-2604.
[13] 孙小钎, 曹淑刚, 陈强, 等. 大直径植入式单桩在海上风电中的创新型应用[J]. 太阳能学报, 2020, 41(8): 295-303.
SUN X Q, CAO S G, CHEN Q, et al.Innovative application of large diameter implanted monopile foundation in offshore wind power[J]. Acta energiae solaris sinica, 2020, 41(8): 295-303.
[14] NOH W F.A time-dependent,two-space-dimensional,coupled Eulerian-Lagrange code[M]. Methods in computational physics. New York: Academic Press, 1964: 2-23.
[15] THO K K, LEUNG C F, CHOW Y K, et al.Eulerian finite-element technique for analysis of jack-up spudcan penetration[J]. International journal of geomechanics, 2012, 12(1): 64-73.
[16] QIU G, HENKE S.Controlled installation of spudcan founda-tions on loose sand overlying weak clay[J]. Marine structures, 2011, 24(4): 528-550.
[17] QIU G, HENKE S, GRABE J.Application of a coupled eulerian-lagrangian approach on geomechanical problems involving large deformations[J]. Computers and geotechnics, 2011, 38(1): 30-39.
[18] 闫澍旺, 霍知亮. 岩土工程下沉贯入数值模拟方法研究进展[J]. 力学与实践, 2016, 38(3): 237-249, 236.
YAN S W, HUO Z L.Advance in numerical simulation methods for penetration in geotechnical engineering[J]. Mechanics in engineering, 2016, 38(3): 237-249, 236.
[19] ZHAO H, YANG X, ZHENG H J, et al.Coupled Eulerian-Lagrangian finite element analysis of penetration processes in silty clay for bucket foundation[J]. Ships and offshore structures, 2023, 18(12): 1701-1712.

基金

中国华能集团科技项目(HNKJ23-H18)

PDF(1817 KB)

Accesses

Citation

Detail

段落导航
相关文章

/