适用于下一代太阳能热发电的集热颗粒磨损特性研究

陈冬, 吕洪坤, 丁历威, 来振亚, 肖刚, 祝培旺

太阳能学报 ›› 2024, Vol. 45 ›› Issue (8) : 432-440.

PDF(2173 KB)
欢迎访问《太阳能学报》官方网站,今天是
PDF(2173 KB)
太阳能学报 ›› 2024, Vol. 45 ›› Issue (8) : 432-440. DOI: 10.19912/j.0254-0096.tynxb.2023-0618

适用于下一代太阳能热发电的集热颗粒磨损特性研究

  • 陈冬1~3, 吕洪坤4, 丁历威4, 来振亚4, 肖刚1~3, 祝培旺1~3
作者信息 +

STUDY ON ATTRITION CHARACTERISTICS OF PARTICLES SUITABLE FOR NEXT GENERATION SOLAR THERMAL POWER GENERATION SYSTEM

  • Chen Dong1~3, Lyu Hongkun4, Ding Liwei4, Lai Zhenya4, Xiao Gang1~3, Zhu Peiwang1~3
Author information +
文章历史 +

摘要

以铝矾土惰性颗粒为研究对象,使用三腔磨损试验台获取颗粒耐磨性能和粒径分布变化规律,颗粒120 h磨损率约2.5%,粒径分布演变模型中转化比例符合正态分布(σ=1/2ds=4d)时模拟效果最好。提出磨损转换系数,通过引入磨损耗散能量作为中间量,将磨损测试设备中获取的颗粒磨损特性推广到实际太阳能热发电系统中。以100 kW太阳能热发电系统为例,计算得铝矾土惰性颗粒在系统各设备间循环一次的磨损相当于在三腔磨损试验台中运行0.0114 h,从而获得系统补料策略。

Abstract

Solid particles have emerged as a promising new heat transfer and storage medium for solar thermal power generation, offering the potential to improve efficiency. Using bauxite inert particles as the research object, a three-chamber attrition test rig was used to obtain the particle attrition resistance and particle size distribution variation rules. The particles experienced a mass loss of approximately 2.5% after 120 hours, and the most effective simulation was achieved when the mass exchange ratio in the particle size distribution evolution model was in accordance with a normal distribution (σ=1/2,ds=4d). To extend these findings to the solar thermal power system, an attrition conversion coefficient was proposed using attrition dissipation energy as an intermediate quantity. Using a 100 kWe system as an example, it’s calculated that one cycle of bauxite inert particles between the system devices is equivalent to 0.0114 hours of operation in a three-chamber attrition test rig. These findings offer valuable insights for the calculation of long-term system economics and the development of operating strategies.

关键词

太阳能热发电系统 / 磨损特性 / 热化学颗粒 / 粒径分布 / 惰性颗粒 / 运行策略

Key words

solar thermal power generation system / attrition characteristics / thermal storage particle / size distribution / inert solid particles / operation strategy

引用本文

导出引用
陈冬, 吕洪坤, 丁历威, 来振亚, 肖刚, 祝培旺. 适用于下一代太阳能热发电的集热颗粒磨损特性研究[J]. 太阳能学报. 2024, 45(8): 432-440 https://doi.org/10.19912/j.0254-0096.tynxb.2023-0618
Chen Dong, Lyu Hongkun, Ding Liwei, Lai Zhenya, Xiao Gang, Zhu Peiwang. STUDY ON ATTRITION CHARACTERISTICS OF PARTICLES SUITABLE FOR NEXT GENERATION SOLAR THERMAL POWER GENERATION SYSTEM[J]. Acta Energiae Solaris Sinica. 2024, 45(8): 432-440 https://doi.org/10.19912/j.0254-0096.tynxb.2023-0618
中图分类号: TM615    TK512   

参考文献

[1] 郭峻男, 张鹏, 王坦, 等. 综合能源系统电-气-冷-热互济协调规划模型研究[J]. 湖南电力, 2023, 43(3): 45-52.
GUO J N, ZHANG P, WANG T, et al.Research on coordinated programming model of electricity-gas-cold-heating integrated energy system[J]. Hunan electric power, 2023, 43(3): 45-52.
[2] 杨瑾, 宋春, 杨楠. 基于粒子群优化算法的分布式电源最优配置研究[J]. 湖南电力, 2023, 43(3): 64-69.
YANG J, SONG C, YANG N.Research on optimal configuration of distributed power generation based on particle swarm optimization algorithm[J]. Hunan electric power, 2023, 43(3): 64-69.
[3] 杨天锋, 陈金利, 杨嘉敏, 等. 基于太阳能布雷顿循环的多能互补发电系统动态特性研究[J]. 太阳能学报, 2021, 42(11): 193-200.
YANG T F, CHEN J L, YANG J M, et al.Study on dynamic characteristics of multi-energy system based on solar brayton cycle[J]. Acta energiae solaris sinica, 2021, 42(11): 193-200.
[4] 马月婧, 潘利生, 魏小林, 等. 太阳能热发电超临界CO2布雷顿循环性能理论研究[J]. 太阳能学报, 2018, 39(5): 1255-1262.
MA Y J, PAN L S, WEI X L, et al.Theoretical investigation on performance of supercritical CO2 brayton cycle for solar thermal power generation system[J]. Acta energiae solaris sinica, 2018, 39(5): 1255-1262.
[5] 肖刚, 倪明江, 岑可法, 等. 太阳能[M]. 北京: 中国电力出版社, 2019.
XIAO G, NI M J, CEN K F.Solar energy[M]. Beijing: China Electric Power Press, 2019.
[6] LIZANA J, CHACARTEGUI R, BARRIOS-PADURA A, et al.Advances in thermal energy storage materials and their applications towards zero energy buildings: a critical review[J]. Applied energy, 2017, 203: 219-239.
[7] JIANG K J, DU X Z, KONG Y Q, et al.A comprehensive review on solid particle receivers of concentrated solar power[J]. Renewable and sustainable energy reviews, 2019, 116: 109463.
[8] 应振镇, 杨天锋, 陈冬, 等. 用于太阳能超临界CO2布雷顿循环的流态化颗粒换热试验与模拟[J]. 太阳能学报, 2022, 43(3): 274-281.
YING Z Z, YANG T F, CHEN D, et al.Experiment and simulation of fluidizing-particle heat exchanger for supercritical CO2 Brayton cycle of CSP[J]. Acta energiae solaris sinica, 2022, 43(3): 274-281.
[9] 吴跃, 申国鑫, 杨磊, 等. 粒径对褐煤煤粉流动性影响研究[J]. 当代化工, 2021, 50(7): 1572-1575, 1697.
WU Y, SHEN G X, YANG L, et al.Effect of particle size on the fluidity of pulverized lignite[J]. Contemporary chemical industry, 2021, 50(7): 1572-1575, 1697.
[10] KANG Q, FLAMANT G, DEWIL R, et al.Particles in a circulation loop for solar energy capture and storage[J]. Particuology, 2019, 43: 149-156.
[11] CHEN Z X, LIM C J, GRACE J R.Study of limestone particle impact attrition[J]. Chemical engineering science, 2007, 62(3): 867-877.
[12] BAUMANN T, ZUNFT S.Properties of granular materials as heat transfer and storage medium in CSP application[J]. Solar energy materials and solar cells, 2015, 143: 38-47.
[13] XIAO G, GRACE J R, JIM LIM C.Attrition characteristics and mechanisms for limestone particles in an air-jet apparatus[J]. Powder technology, 2011, 207(1/2/3): 183-191.
[14] BAYON A, BADER R, JAFARIAN M, et al.Techno-economic assessment of solid-gas thermochemical energy storage systems for solar thermal power applications[J]. Energy, 2018, 149: 473-484.
[15] LIU F, SONG C, ZHU D, et al.Attrition and attrition-resistance of oxygen carrier in chemical looping process-a comprehensive review[J]. Fuel, 2023, 333: 126304.
[16] CHEN Z X, GRACE J R, LIM C J.Development of particle size distribution during limestone impact attrition[J]. Powder technology, 2011, 207(1-3): 55-64.
[17] XIAO G, GRACE J R, LIM C J.Evolution of limestone particle size distribution in an air-jet attrition apparatus[J]. Industrial & engineering chemistry research, 2014, 53(41): 15845-15851.
[18] DI RENZO A, DI MAIO F P. Comparison of contact-force models for the simulation of collisions in DEM-based granular flow codes[J]. Chemical engineering science, 2004, 59(3): 525-541.
[19] BUCK R, AGRAFIOTIS C, TESCARI S, et al.Technoeconomic analysis of candidate oxide materials for thermochemical storage in concentrating solar power systems[J]. Frontiers in energy research, 2021, 9: 694248.
[20] GWYN J E.On the particle size distribution function and the attrition of cracking catalysts[J]. AIChE journal, 1969, 15(1): 35-39.
[21] SAHOO L, BANERJEE A, BHUNIA A K, et al.An efficient GA-PSO approach for solving mixed-integer nonlinear programming problem in reliability optimization[J]. Swarm and evolutionary computation, 2014, 19: 43-51.
[22] GHADIRI M, ZHANG Z.Impact attrition of particulate solids. part 1: a theoretical model of chipping[J]. Chemical engineering science, 2002, 57(17): 3659-3669.
[23] ARCHARD J F.Contact and rubbing of flat surfaces[J]. Journal of applied physics, 1953, 24(8): 981-988.
[24] HU Y Z, MA T B, WANG H.Energy dissipation in atomic-scale friction[J]. Friction, 2013, 1(1): 24-40.
[25] CELIS J P, STALS L, VANCOILLE E, et al.Wear testing of hard coatings: more than wear rate?[J]. Surface engineering, 1998, 14(3): 205-210.
[26] MOHRBACHER H, CELIS J P, ROOS J R.Laboratory testing of displacement and load induced fretting[J]. Tribology international, 1995, 28(5): 269-278.
[27] HUQ M Z, CELIS J P.Expressing wear rate in sliding contacts based on dissipated energy[J]. Wear, 2002, 252(5-6): 375-383.
[28] FOUVRY S, KAPSA P, VINCENT L.Quantification of fretting damage[J]. Wear, 1996, 200(1-2): 186-205.
[29] BEKE B.Principles of comminution[M]. Budapest: Akadémiai Kiadó, 1964.
[30] XIE X Y, XU H R, GAN D, et al.A sliding-bed particle solar receiver with controlling particle flow velocity for high-temperature thermal power generation[J]. Renewable energy, 2022, 183: 41-50.
[31] XIE X Y, XIAO G, NI M J, et al.Optical and thermal performance of a novel solar particle receiver[C]//AIP Conference Proceedings, 2019, 2126(1): 030065.
[32] SMENT J, ALBRECHT K, MARTINEZ M J, et al.Design considerations for a high-temperature particle storage bin[C]//AIP Conference Proceedings, 2020, 2303(1): 190029.
[33] JENIKE A W.Quantitative design of mass-flow bins[J]. Powder technology, 1967, 1(4): 237-244.
[34] ALBRECHT K J, HO C K.Design and operating considerations for a shell-and-plate, moving packed-bed, particle-to-sCO2 heat exchanger[J]. Solar energy, 2019, 178: 331-340.
[35] HO C K, CARLSON M, ALBRECHT K J, et al.Evaluation of alternative designs for a high temperature particle-to-sCO2 heat exchanger[J]. Journal of solar energy engineering, 2019, 141(2): 021001.
[36] REPOLE K K D, JETER S M. Design and analysis of a high temperature particulate hoist for proposed particle heating concentrator solar power systems[C]//ASME 2016 10th International Conference on Energy Sustainability Collocated with the ASME 2016 Power Conference and the ASME 2016 14th International Conference on Fuel Cell Science, Engineering and Technology. Charlotte, North Carolina, USA, 2016.

基金

国网浙江省电力有限公司科技项目资助(B311DS230006)

PDF(2173 KB)

Accesses

Citation

Detail

段落导航
相关文章

/