深远海原位电解海水制氢的战略及技术研究

胡鹏, 李志川, 李子航, 劳景水

太阳能学报 ›› 2024, Vol. 45 ›› Issue (8) : 63-70.

PDF(1834 KB)
欢迎访问《太阳能学报》官方网站,今天是
PDF(1834 KB)
太阳能学报 ›› 2024, Vol. 45 ›› Issue (8) : 63-70. DOI: 10.19912/j.0254-0096.tynxb.2023-0623

深远海原位电解海水制氢的战略及技术研究

  • 胡鹏1, 李志川2, 李子航2, 劳景水3
作者信息 +

RESEARCH ON STRATEGIC AND TECHNICAL OF HYDROGEN PRODUCTION BY DEEP OFFSHORE IN SITU ELECTROLYSIS OF SEAWATER

  • Hu Peng1, Li Zhichuan2, Li Zihang2, Lao Jingshui3
Author information +
文章历史 +

摘要

在中国实现“双碳”战略目标的背景下,氢能将成为能源转型的关键。中国海上风电资源丰富,但面临并网难、输送难、成本高等挑战。直接电解海水制氢或可解决大规模制氢水源限制,同时解决深远海可再生能源输送难、制氢成本高的问题,具有巨大潜力。回顾电解海水制氢技术的发展历程,比较现有几种电解水制氢的方式,阐述目前技术所面临的挑战和机遇,并展望电解海水制氢产业的未来。以某海上油气公司为例,探讨能源型支柱企业在推动海上风电和电解海水制氢技术融合方面的产业化可能性。结合已有工程装备,针对如何降低成本、避免同质化竞争、发展特色技术等提出思考性建议,其中包括完善海上风电设施布局,推动发展电解海水制氢技术,提升氢气输送的保障能力,以及实现海上绿色能源岛协同发展等。

Abstract

In the context of achieving the "dual-carbon" strategy in China, hydrogen energy will play a bridging and supporting role in the future energy transition. As a promising green energy technology, renewable energy electrolysis of water to produce hydrogen has attracted widespread attention. China has abundant offshore wind energy resources; however, there are currently challenges in grid connection, transmission, and high costs. Considering the high investment and production costs of seawater desalination and purification, as well as the complex treatment processes involved, the direct electrolysis of seawater for hydrogen production offers the potential to overcome the limitations of large-scale hydrogen production water sources. It can also address the challenges of transmitting renewable energy from deep-sea locations and the high on-site hydrogen production costs, resulting in significant economic and social benefits. This article reviews the development of seawater electrolysis technology, compares several existing electrolysis methods for hydrogen production, discusses the current challenges and opportunities, and provides an outlook on the future of the seawater electrolysis hydrogen production industry. Taking an offshore oil and gas company as an example, it explores the possibilities for energy enterprises to promote the integration of offshore wind power and seawater electrolysis technology on an industrial scale. It also suggests measures to reduce costs, avoid homogenous competition, and develop distinctive technologies, including improving the layout of offshore wind power facilities, developing seawater electrolysis technology, enhancing hydrogen transportation and storage capabilities, and achieving coordinated development of offshore green energy islands.

关键词

电解水 / 制氢 / 海上风电 / 氢能经济 / 电解海水

Key words

electrolysis of water / hydrogen production / offshore wind power / hydrogen energy economy / seawater electrolysis

引用本文

导出引用
胡鹏, 李志川, 李子航, 劳景水. 深远海原位电解海水制氢的战略及技术研究[J]. 太阳能学报. 2024, 45(8): 63-70 https://doi.org/10.19912/j.0254-0096.tynxb.2023-0623
Hu Peng, Li Zhichuan, Li Zihang, Lao Jingshui. RESEARCH ON STRATEGIC AND TECHNICAL OF HYDROGEN PRODUCTION BY DEEP OFFSHORE IN SITU ELECTROLYSIS OF SEAWATER[J]. Acta Energiae Solaris Sinica. 2024, 45(8): 63-70 https://doi.org/10.19912/j.0254-0096.tynxb.2023-0623
中图分类号: TK91   

参考文献

[1] 中国氢能源及燃料电池产业创新战略联盟. 中国氢能源及燃料电池白皮书2020[M]. 北京: 人民日报出版社, 2020
CHINA HYDROGEN ALLIANCE.China hydrogen energy and fuel cell white paper 2020[M]. Beijing: People’s Daily Publishing House, 2020.
[2] 邹才能, 李建明, 张茜, 等. 氢能工业现状、技术进展、挑战及前景[J]. 天然气工业, 2022, 42(4): 1-20.
ZOU C N, LI J M, ZHANG X, et al.Industrial status, technological progress, challenges and prospects of hydrogen energy[J]. Natural gas industry, 2022, 42(4): 1-20.
[3] 李亮荣, 彭建, 付兵, 等. 碳中和愿景下绿色制氢技术发展趋势及应用前景分析[J]. 太阳能学报, 2022, 43(6): 508-520.
LI L R, PENG J, FU B, et al.Development trend and application prospect of green hydrogen production technologies under carbon neutrality vision[J]. Acta energiae solaris sinica, 2022, 43(6): 508-520.
[4] 周小彦. 海上风电全国总规划超100 GW![EB/OL]. 北极星风力发电网, 2022. https://news.bjx.com.cn/html/20220311/1209671.shtml
ZHOU X Y. Offshore wind power, national total plan exceeds 100 GW![EB/OL]. Polaris Wind Power Network, 2022. https://news.bjx.com.cn/html/20220311/1209671.shtml.
[5] MCDONAGH S, AHMED S, DESMOND C, et al.Hydrogen from offshore wind: Investor perspective on the profitability of a hybrid system including for curtailment[J]. Applied energy, 2020, 265: 114732.
[6] 安娜, 陈奥. 中海油首个海上风电项目全容量并网发电[EB/OL]. 北极星风力发电网, 2022. https://news.bjx.com.cn/html/20211021/1182953.shtml
AN N, CHEN A. CNOOC’s first offshore wind power project fully connected to the grid for power generation[EB/OL]. Polaris Wind Power Network, 2022. https://news.bjx.com.cn/html/20211021/1182953.shtml.
[7] SARRIAS-MENA R, FERNÁNDEZ-RAMÍREZ L M, GARCÍA-VÁZQUEZ C A, et al. Electrolyzer models for hydrogen production from wind energy systems[J]. International journal of hydrogen energy, 2015, 40(7): 2927-2938.
[8] CHI J, YU H M.Water electrolysis based on renewable energy for hydrogen production[J]. Chinese journal of catalysis, 2018, 39(3): 390-394.
[9] LEI Q, WANG B G, WANG P C, et al.Hydrogen generation with acid/alkaline amphoteric water electrolysis[J]. Journal of energy chemistry, 2019, 38: 162-169.
[10] GRIGORIEV S A, POREMBSKY V I, FATEEV V N.Pure hydrogen production by PEM electrolysis for hydrogen energy[J]. International journal of hydrogen energy, 2006, 31(2): 171-175.
[11] NAIMI Y, ANTAR A.Hydrogen generation by water electrolysis[M]//EYVAZ M, ed. Advances In Hydrogen Generation Technologies. InTech, 2018.
[12] JAMESH M I, SUN X M.Recent progress on earth abundant electrocatalysts for oxygen evolution reaction (OER) in alkaline medium to achieve efficient water splitting-A review[J]. Journal of power sources, 2018, 400: 31-68.
[13] ZHOU D J, LI P S, LIN X, et al.Layered double hydroxide-based electrocatalysts for the oxygen evolution reaction: identification and tailoring of active sites, and superaerophobic nanoarray electrode assembly[J]. Chemical society reviews, 2021, 50(15): 8790-8817.
[14] WU X C, LIN Y M, JI Y, et al.Insights into the enhanced catalytic activity of Fe-doped LiCoPO4 for the oxygen evolution reaction[J]. ACS applied energy materials, 2020, 3(3): 2959-2965.
[15] 陈彬, 谢和平, 刘涛, 等. 碳中和背景下先进制氢原理与技术研究进展[J]. 工程科学与技术, 2022, 54(1): 106-116.
CHEN B, XIE H P, LIU T, et al.Principles and progress of advanced hydrogen production technologies in the context of carbon neutrality[J]. Advanced engineering sciences, 2022, 54(1): 106-116.
[16] 2022势银氢能与燃料电池产业年会. 中国氢能源及燃料电池产业年度蓝皮书2022[M]. 宁波: 势银, 2022
2022 SHIYIN HYDROGEN ENERGY AND FUEL CELL INDUSTRY ANNUAL CONFERENCE. China Hydrogen Energy and Fuel Cell Industry Annual Blue Book 2022[M]. Ningbo: Shiyin, 2022
[17] BESSARABOV D, WANG H J, LI H, et al.PEM electrolysis for hydrogen production: principles and applications[M]. Boca Raton: CRC Press, 2016.
[18] SHIVA KUMAR S, HIMABINDU V.Hydrogen production by PEM water electrolysis-a review[J]. Materials science for energy technologies, 2019, 2(3): 442-454.
[19] BUTTLER A, SPLIETHOFF H.Current status of water electrolysis for energy storage, grid balancing and sector coupling via power-to-gas and power-to-liquids: a review[J]. Renewable and sustainable energy reviews, 2018, 82: 2440-2454.
[20] 马晓锋, 张舒涵, 何勇, 等. PEM电解水制氢技术的研究现状与应用展望[J]. 太阳能学报, 2022, 43(6): 420-427.
MA X F, ZHANG S H, HE Y, et al.Research status and application prospect of pem electrolysis water technology for hydrogen production[J]. Acta energiae solaris sinica, 2022, 43(6): 420-427.
[21] 李冬云, 李骞, 董海刚, 等. 从二次资源中回收铱的研究进展[J]. 矿产保护与利用, 2019, 39(3): 173-178.
LI D Y, LI Q, DONG H G, et al.Research progress in the recovery of iridium from secondary resources[J]. Conservation and utilization of mineral resources, 2019, 39(3): 173-178.
[22] 马璐璐, 李涣. 数字会说话:珍惜吧!看看这些与水有关的数据[EB/OL]. http://www.xinhuanet.com/video/sjxw/2021-03/22/c_1211077788.htm
MA L L, LI H.Numbers can speak: cherish it! Check out these water-related stats[EB/OL]. http://www.xinhuanet.com/video/sjxw/2021-03/22/c_1211077788.htm.
[23] 矫德峰, 隋大为. 海水淡化前景广阔[J]. 厦门科技, 1999(3): 43-44.
JIAO D F, SUI D W.海水淡化前景广阔[J]. Xiamen science & technology, 1999(3):43-44.
[24] FUJIMURA K, IZUMIYA K, KAWASHIMA A, et al.Anodically deposited manganese-molybdenum oxide anodes with high selectivity for evolving oxygen in electrolysis of seawater[J]. Journal of applied electrochemistry, 1999, 29(6): 769-775.
[25] DIONIGI F, REIER T, PAWOLEK Z, et al.Design criteria, operating conditions, and nickel-iron hydroxide catalyst materials for selective seawater electrolysis[J]. ChemSusChem, 2016, 9(9): 962-972.
[26] HSU S H, MIAO J W, ZHANG L P, et al.An earth-abundant catalyst-based seawater photoelectrolysis system with 17.9% solar-to-hydrogen efficiency[J]. Advanced materials, 2018, 30(18): e1707261.
[27] GUO J X, ZHENG Y, HU Z P, et al.Direct seawater electrolysis by adjusting the local reaction environment of a catalyst[J]. Nature energy, 2023, 8: 264-272.
[28] ZHENG J J.Seawater splitting for high-efficiency hydrogen evolution by alloyed PtNix electrocatalysts[J]. Applied surface science, 2017, 413: 360-365.
[29] YU L, ZHU Q, SONG S W, et al.Non-noble metal-nitride based electrocatalysts for high-performance alkaline seawater electrolysis[J]. Nature communications, 2019, 10(1): 5106.
[30] XIE H P, ZHAO Z Y, LIU T, et al.A membrane-based seawater electrolyser for hydrogen generation[J]. Nature, 2022, 612(7941): 673-678.
[31] KUANG Y, KENNEY M J, MENG Y T, et al.Solar-driven, highly sustained splitting of seawater into hydrogen and oxygen fuels[J]. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116(14): 6624-6629.
[32] LI P S, WANG S Y, SAMO I A, et al.Common-ion effect triggered highly sustained seawater electrolysis with additional NaCl production[J]. Research, 2020, 2020: 2872141.
[33] 黄小卫, 李晓骏, 左干清. 国内外海底电缆工程现状及展望[J]. 电线电缆, 2023(1): 1-6.
HUANG X W, LI X J, ZUO G Q.Application status and prospect of submarine cable projects at home and abroad[J]. Wire & cable, 2023(0): 1-6.
[34] 黄伟捷, 江岳文. 远海风电输电和制氢经济可行性分析[J]. 中国电力, 2022, 55(1): 91-100.
HUANG W J, JIANG Y W.Comparison of economic feasibilites between power transmission and hydrogen production from an offshore wind farm[J]. Electric power, 2022, 55(1): 91-100.
[35] 周京华, 孟祥飞, 陈亚爱, 等. 基于新能源发电的电解水制氢直流电源研究[J]. 太阳能学报, 2022, 43(6): 389-397.
ZHOU J H, MENG X F, CHEN Y A, et al.Research on dc power supply for hydrogen production from electrolytic water based on new energy generation[J]. Acta energiae solaris sinica, 2022, 43(6): 389-397.
[36] 陈海龙, 孙政策, 凌爱军, 等. 我国在役海底管道发证现状研究[J]. 石油工程建设, 2020, 46(S1): 273-277.
CHEN H L, SUN Z C, LING A J, et al.Current status of certifications for in-service submarine pipelines in China[J]. Petroleum engineering construction, 2020, 46(S1): 273-277.
[37] 田甜, 李怡雪, 黄磊, 等. 海上风电制氢技术经济性对比分析[J]. 电力建设, 2021, 42(12): 136-144.
TIAN T, LI Y X, HUANG L, et al.Comparative analysis on the economy of hydrogen production technology for offshore wind power consumption[J]. Electric power construction, 2021, 42(12): 136-144.

PDF(1834 KB)

Accesses

Citation

Detail

段落导航
相关文章

/