基于图像处理的风电叶片损伤识别定位系统

石腾, 许波峰, 汪亚洲, 张金波, 赵振宙, 蔡新

太阳能学报 ›› 2024, Vol. 45 ›› Issue (8) : 565-571.

PDF(2200 KB)
欢迎访问《太阳能学报》官方网站,今天是
PDF(2200 KB)
太阳能学报 ›› 2024, Vol. 45 ›› Issue (8) : 565-571. DOI: 10.19912/j.0254-0096.tynxb.2023-0639

基于图像处理的风电叶片损伤识别定位系统

  • 石腾1~3, 许波峰1~4, 汪亚洲4, 张金波3, 赵振宙1,2, 蔡新4
作者信息 +

DAMAGE IDENTIFICATION AND POSITIONING SYSTEM OF WIND TURBINE BLADES BASED ON IMAGE PROCESSING

  • Shi Teng1~3, Xu Bofeng1~4, Wang Yazhou4, Zhang Jinbo3, Zhao Zhenzhou1,2, Cai Xin4
Author information +
文章历史 +

摘要

设计一套基于图像处理的风电叶片损伤识别定位系统。首先,耦合图像滤波、分割和形态学处理等图像处理算法实现损伤区域的检测识别;然后,基于多边形拟合结果,结合质心定位算法和外接矩形的位置坐标实现叶片损伤的精确定位;最后,依据提取到的基础几何特征、形状因子和长短径之比等图像特征实现叶片损伤类型的准确判断;通过对比不同光照条件下的叶片损伤检测效果,验证了本系统具有一定的自适应能力。试验表明,本系统的平均检测准确率为90%,具备一定的可靠性和稳定性。

Abstract

This paper presents a novel approach to the intelligent diagnosis of wind turbine blade damages, employing an image processing-based identification and positioning system. The system firstly utilises a combination of image processing algorithms, including image filtering, segmentation, and morphological processing, to detect and recognize damaged areas. The precise location of blade damage is determined through the integration of polygon fitting results, a centroid positioning algorithm, and the coordinates of the outer rectangle. Furthermore, the system accurately identifies the type of blade damage by extracting and analysing basic geometric features, shape factors, and the ratio of the long diameter to the short diameter. Comparative analysis of blade damage detection under varying lighting conditions confirms the system’s adaptive capabilities. Testing results shows that the average detection accuracy of this system is 90%, which has certain reliability and stability.

关键词

风电叶片 / 图像处理 / 损伤检测 / 识别定位系统

Key words

wind turbine blades / image processing / damage detection / identification and positioning system

引用本文

导出引用
石腾, 许波峰, 汪亚洲, 张金波, 赵振宙, 蔡新. 基于图像处理的风电叶片损伤识别定位系统[J]. 太阳能学报. 2024, 45(8): 565-571 https://doi.org/10.19912/j.0254-0096.tynxb.2023-0639
Shi Teng, Xu Bofeng, Wang Yazhou, Zhang Jinbo, Zhao Zhenzhou, Cai Xin. DAMAGE IDENTIFICATION AND POSITIONING SYSTEM OF WIND TURBINE BLADES BASED ON IMAGE PROCESSING[J]. Acta Energiae Solaris Sinica. 2024, 45(8): 565-571 https://doi.org/10.19912/j.0254-0096.tynxb.2023-0639
中图分类号: TK83   

参考文献

[1] DU Y, ZHOU S X, JING X J, et al.Damage detection techniques for wind turbine blades: a review[J]. Mechanical systems and signal processing, 2020, 141: 106445.
[2] SONG X W, XING Z T, JIA Y, et al.Review on the damage and fault diagnosis of wind turbine blades in the germination stage[J]. Energies, 2022, 15(20): 7492.
[3] KRAUSE T, OSTERMANN J.Damage detection for wind turbine rotor blades using airborne sound[J]. Structural control and health monitoring, 2020, 27(5): e2520.
[4] PENG Y P, WANG W J, TANG Z, et al.Non-uniform illumination image enhancement for surface damage detection of wind turbine blades[J]. Mechanical systems and signal processing, 2022, 170: 108797.
[5] DENG L W, GUO Y G, CHAI B R.Defect detection on a wind turbine blade based on digital image processing[J]. Processes, 2021, 9(8): 1452.
[6] TIWARI K A, RAISUTIS R.Post-processing of ultrasonic signals for the analysis of defects in wind turbine blade using guided waves[J]. The journal of strain analysis for engineering design, 2018, 53(8): 546-555.
[7] TANG J L, SOUA S, MARES C, et al.An experimental study of acoustic emission methodology for in service condition monitoring of wind turbine blades[J]. Renewable energy, 2016, 99: 170-179.
[8] 刘钦东, 罗勇水, 张军华, 等. 基于WPT-SVD-KELM的大型风力机叶片表面裂纹识别方法研究[J]. 太阳能学报, 2023, 44(3): 155-161.
LIU Q D, LUO Y S, ZHANG J H, et al.Research on surface crack identification method of large wind turbine blade based on WPT-SVD-KELM[J]. Acta energiae solaris sinica, 2023, 44(3): 155-161.
[9] 李密密, 戴巨川, 陈换过, 等. 基于光纤传感的风电机组叶片应变传递特性研究[J]. 太阳能学报, 2022, 43(7): 375-384.
LI M M, DAI J C, CHEN H G, et al.Research on strain sensing transmission characteristics of wind turbine blades based on optical fiber sensing[J]. Acta energiae solaris sinica, 2022, 43(7): 375-384.
[10] LI W R, ZHAO W H, GU J Z, et al.Dynamic characteristics monitoring of large wind turbine blades based on target-free DSST vision algorithm and UAV[J]. Remote sensing, 2022, 14(13): 3113.
[11] YANG X Y, ZHANG Y F, LV W, et al.Image recognition of wind turbine blade damage based on a deep learning model with transfer learning and an ensemble learning classifier[J]. Renewable energy, 2021, 163: 386-397.
[12] 潘杰. 基于图像识别技术的风力机叶片损伤检测方法研究[D]. 镇江: 江苏大学, 2021.
PAN J.Research on wind turbine blade damage detection method based on image recognition technology[D]. Zhenjiang: Jiangsu University, 2021.
[13] DE NATALE F G B, BOATO G. Detecting morphological filtering of binary images[J]. IEEE transactions on information forensics and security, 2017, 12(5): 1207-1217.
[14] 杨鹏. 基于无人机图像采集和改进深度残差网络分类算法的风机叶片表面缺陷检测系统研究[D]. 呼和浩特: 内蒙古工业大学, 2021.
YANG P.The research on a detection system for wind turbine blade surface defects based on uav image acquisition and an improved depth residual network classification algorithm[D]. Hohhot: Inner Mongolia University of Technology, 2021.
[15] 云赛. 基于图像处理的风力发电机叶片表面缺陷检测技术研究[D]. 天津: 天津理工大学, 2019.
YUN S.Research on surface defect detection technology of wind turbine blade based on image processing[D]. Tianjin: Tianjin University of Technology, 2019.

基金

江苏省研究生科研与实践创新计划(SJCX23_0184); 江苏省输配电装备技术重点实验室自主科研课题(2022JSSPD07)

PDF(2200 KB)

Accesses

Citation

Detail

段落导航
相关文章

/