基于惯性同步的构网型光伏并网系统次同步振荡特性分析

高本锋, 刘王锋, 丁雨晴, 吴林林, 孙大卫, 邓鹏程

太阳能学报 ›› 2024, Vol. 45 ›› Issue (8) : 398-406.

PDF(1837 KB)
欢迎访问《太阳能学报》官方网站,今天是
PDF(1837 KB)
太阳能学报 ›› 2024, Vol. 45 ›› Issue (8) : 398-406. DOI: 10.19912/j.0254-0096.tynxb.2023-0657

基于惯性同步的构网型光伏并网系统次同步振荡特性分析

  • 高本锋1, 刘王锋1, 丁雨晴1, 吴林林2, 孙大卫2, 邓鹏程1
作者信息 +

ANALYSIS OF SUB-SYNCHRONOUS OSCILLATION CHARACTERISTICS OF GRID-FORMING PHOTOVOLTAIC SYSTEM BASED ON INERTIAL SYNCHRONIZATION

  • Gao Benfeng1, Liu Wangfeng1, Ding Yuqing1, Wu Linlin2, Sun Dawei2, Deng Pengcheng1
Author information +
文章历史 +

摘要

针对目前适用于单级式构网光伏发电并网系统的惯性同步控制策略及其次同步振荡特性鲜有研究这一问题,该文将惯性同步控制应用于构网型光伏发电系统,并建立其状态空间模型,利用特征值分析法确定系统振荡模式,最后利用参与因子和特征值根轨迹分析系统相关参数对振荡模式的影响。研究结果表明,构网型光伏并网系统具有更好的弱电网适应性,但在强电网下,存在直流电容和惯性同步环节共同主导的SSO模式,可通过增大直流电容和电压内环比例系数或减小电压内环积分系数来增大系统阻尼,提高系统稳定性。基于PSCAD/EMTDC时域仿真平台,验证了理论分析的正确性。

Abstract

Aiming at the problem that the inertial synchronous control strategy and its sub-synchronous oscillation characteristics are rarely studied for single-stage grid-forming photovoltaic power generation systems, this paper applies inertial synchronous control to grid-forming photovoltaic power generation systems, establishes its state-space model, and uses eigenvalue analysis to determine the oscillation mode of the system. Finally, the influence of system parameters on the oscillation mode is analyzed by using the participation factor and eigenvalue root locus. The research results show that grid-forming photovoltaic system has better adaptability to weak power grid, but in strong power network, there is SSO mode dominated by DC capacitance and inertia synchronization, which can increase the system damping and improve the system stability by increasing the DC capacitance and voltage inner loop proportional coefficient or reducing the voltage inner loop integral coefficient. Based on the PSCAD/EMTDC time domain simulation platform, the correctness of the theoretical analysis is verified.

关键词

光伏系统 / 电力系统稳定性 / 次同步振荡 / 构网型光伏 / 惯性同步

Key words

photovoltaic system / electric power system stability / subsynchronous oscillation(SSO) / grid-forming photovoltaic / inertial synchronization

引用本文

导出引用
高本锋, 刘王锋, 丁雨晴, 吴林林, 孙大卫, 邓鹏程. 基于惯性同步的构网型光伏并网系统次同步振荡特性分析[J]. 太阳能学报. 2024, 45(8): 398-406 https://doi.org/10.19912/j.0254-0096.tynxb.2023-0657
Gao Benfeng, Liu Wangfeng, Ding Yuqing, Wu Linlin, Sun Dawei, Deng Pengcheng. ANALYSIS OF SUB-SYNCHRONOUS OSCILLATION CHARACTERISTICS OF GRID-FORMING PHOTOVOLTAIC SYSTEM BASED ON INERTIAL SYNCHRONIZATION[J]. Acta Energiae Solaris Sinica. 2024, 45(8): 398-406 https://doi.org/10.19912/j.0254-0096.tynxb.2023-0657
中图分类号: TM712   

参考文献

[1] 胡文波, 贾祺, 刘侃, 等. 低运行工况下直驱风电场电流内环主导的次同步振荡特性研究[J]. 太阳能学报, 2022, 43(4): 341-350.
HU W B, JIA Q, LIU K, et al.Sub-synchronous oscillation of direct drive pmsg based wind farm under low operating conditions connected to weak grid[J]. Acta energiae solaris sinica, 2022, 43(4): 341-350.
[2] ETXEGARAI A, EGUIA P, TORRES E, et al.Impact of wind power in isolated power systems[C]//2012 16th IEEE Mediterranean Electrotechnical Conference. Yasmine Hammamet, Tunisia, 2012: 63-66.
[3] 李雨果, 易皓, 姜鑫, 等. 极弱电网下新能源跟网逆变器低频振荡的机理探究与暂态无功过补稳定性提升策略[J]. 中国电机工程学报, 2023, 43(2): 482-496.
LI Y G, YI H, JIANG X, et al.Mechanism researching on low-frequency resonance of Renwable-energy grid-following inverters under very weak grid and the stability-improving strategy based on dynamic reactive power over compensation[J]. Proceedings of the CSEE, 2023, 43(2): 482-496.
[4] 杨东升, 阮新波, 吴恒. 提高LCL型并网逆变器对弱电网适应能力的虚拟阻抗方法[J]. 中国电机工程学报, 2014, 34(15): 2327-2335.
YANG D S, RUAN X B, WU H.A virtual impedance method to improve the performance of LCL-type grid-connected inverters under weak grid conditions[J]. Proceedings of the CSEE, 2014, 34(15): 2327-2335.
[5] TENG Y T, DENG W, PEI W, et al.Review on the control methods of grid converter for high proportion new energy power systems[J]. Global energy internet (English Edition), 2022, 5(3): 328-342.
[6] 秦世耀, 齐琛, 李少林, 等. 电压源型构网风电机组研究现状及展望[J]. 中国电机工程学报, 2023, 43(4): 1314-1334.
QIN S Y, QI C, LI S L, et al.Review of the voltage-source grid forming wind turbine[J]. Proceedings of the CSEE, 2023, 43(4): 1314-1334.
[7] DRIESEN J, VISSCHER K.Virtual synchronous generators[C]//2008 IEEE Power and Energy Society General Meeting-Conversion and Delivery of Electrical Energy in the 21st Century. Pittsburgh, PA, USA, 2008: 1-3.
[8] AVAZOV A, COLAS F, BEERTEN J, et al.Damping of torsional vibrations in a type-IV wind turbine interfaced to a grid-forming converter[C]//2021 IEEE Madrid PowerTech. Madrid, Spain, 2021: 1-6.
[9] 詹长江, 吴恒, 王雄飞, 等. 构网型变流器稳定性研究综述[J]. 中国电机工程学报, 2023, 43(6): 2339-2359.
ZHAN C J, WU H, WANG X F, et al.An overview of stability studies of grid-forming voltage source converters[J]. Proceedings of the CSEE, 2023, 43(6): 2339-2359.
[10] ARGHIR C, DÖRFLER F. The electronic realization of synchronous machines: model matching, angle tracking, and energy shaping techniques[J]. IEEE transactions on power electronics, 2020, 35(4): 4398-4410.
[11] 张琛, 蔡旭, 李征. 具有自主电网同步与弱网稳定运行能力的双馈风电机组控制方法[J]. 中国电机工程学报, 2017, 37(2): 476-486.
ZHANG C, CAI X, LI Z.Control of DFIG-based wind turbines with the capability of automatic grid-synchronization and stable operation under weak grid condition[J]. Proceedings of the CSEE, 2017, 37(2): 476-486.
[12] YANG R X, SHI G, CAI X, et al.Voltage source control of offshore all-DC wind farm[J]. IET renewable power generation, 2019, 13(16): 2986-2993.
[13] 桑顺, 徐婷, 齐琛, 等. 惯性同步构网型变换器定量感知电网频率的机理及抗干扰控制策略[J]. 电网技术, 2023, 47(4): 1395-1408.
SANG S, XU T, QI C, et al.Mechanism of quantitatively sensing grid frequency and Anti-disturbance control strategy for the grid-forming converter[J]. Power system technology, 2023, 47(4): 1395-1408.
[14] 刘淇玉, 李永刚, 王月, 等. 构网型并网逆变器状态空间建模及稳定性分析[J]. 华北电力大学学报(自然科学版): 2024, 51(1): 83-93.
LIU Q Y, LI Y G, WANG Y, et al.State space modeling and stability analysis of grid-forming inverter[J]. Journal of North China Electric Power University (Natural science edition): 2024, 51(1): 83-93.
[15] WANG X F, TAUL M G, WU H, et al.Grid-synchronization stability of converter-based resources—an overview[J]. IEEE open journal of industry applications, 2020, 1: 115-134.
[16] 桑顺, 张琛, 蔡旭, 等. 全功率变换风电机组的电压源控制(一): 控制架构与弱电网运行稳定性分析[J]. 中国电机工程学报, 2021, 41(16): 5604-5616.
SANG S, ZHANG C, CAI X, et al.Voltage source control of wind turbines with full-scale converters(part Ⅰ): control architecture and stability analysis under weak grid conditions[J]. Proceedings of the CSEE, 2021, 41(16): 5604-5616.
[17] 高本锋, 陈淑平, 刘毅. 光伏与LCC-HVDC系统的次同步振荡耦合路径及阻尼特性分析[J]. 电力系统自动化, 2022, 46(24): 66-75.
GAO B F, CHEN S P, LIU Y.Analysis on coupling path and damping characteristics of sub-synchronous oscillation between photovoltaic and LCC-HVDC system[J]. Automation of electric power systems, 2022, 46(24): 66-75.
[18] 马健, 樊艳芳, 王一波, 等. 适用于集中型光伏直流升压变换器的MPPT策略[J]. 太阳能学报, 2022, 43(5): 137-145.
MA J, FAN Y F, WANG Y B, et al.Maximum power point tracking strategy for centralized photovoltaic dc-dc converter[J]. Acta energiae solaris sinica, 2022, 43(5): 137-145.
[19] HUANG L B, XIN H H, WANG Z, et al.A virtual synchronous control for voltage-source converters utilizing dynamics of DC-link capacitor to realize self-synchronization[J]. IEEE journal of emerging and selected topics in power electronics, 2017, 5(4): 1565-1577.
[20] 张耀文, 张政权, 刘庆想, 等. 新型双向储能变流器分析与研究[J]. 太阳能学报, 2022, 43(4): 82-89.
ZHANG Y W, ZHANG Z Q, LIU Q X, et al.Analysis and research of new bidirectional energy storage converter[J]. Acta energiae solaris sinica, 2022, 43(4): 82-89.
[21] DU W J, WANG X B, WANG H F.Sub-synchronous interactions caused by the PLL in the grid-connected PMSG for the wind power generation[J]. International journal of electrical power & energy systems, 2018, 98: 331-341.
[22] 高本锋, 姚磊, 李忍, 等. 大规模光伏电站并网的振荡模式分析[J]. 电力自动化设备, 2017, 37(8): 123-130.
GAO B F, YAO L, LI R, et al.Analysis on oscillation modes of large-scale grid-connected PV power plant[J]. Electric power automation equipment, 2017, 37(8): 123-130.
[23] 李永刚, 严风, 周一辰. 基于多时间尺度降阶的光伏发电控制参数优化[J]. 华北电力大学学报(自然科学版), 2020, 47(3): 1-9.
LI Y G, YAN F, ZHOU Y C.Parameter optimization of photovoltaic power generation system based on multi-time scale reduction[J]. Journal of North China Electric Power University (natural science edition), 2020, 47(3): 1-9.

基金

国家重点研发计划(2021YFB2400800)

PDF(1837 KB)

Accesses

Citation

Detail

段落导航
相关文章

/