基于灵活性调节资源动态演变的储能容量预测

徐君威, 李爱魁, 李武峰, 李相俊, 全慧

太阳能学报 ›› 2024, Vol. 45 ›› Issue (8) : 17-26.

PDF(1067 KB)
欢迎访问《太阳能学报》官方网站,今天是
PDF(1067 KB)
太阳能学报 ›› 2024, Vol. 45 ›› Issue (8) : 17-26. DOI: 10.19912/j.0254-0096.tynxb.2023-0660

基于灵活性调节资源动态演变的储能容量预测

  • 徐君威1, 李爱魁1, 李武峰2, 李相俊3, 全慧3
作者信息 +

PREDICTION OF ENERGY STORAGE CAPACITY BASED ON FLEXIBLE REGULATION OF RESOURCE DYNAMIC EVOLUTION

  • Xu Junwei1, Li Aikui1, Li Wufeng2, Li Xiangjun3, Quan Hui3
Author information +
文章历史 +

摘要

基于储能的灵活性调节能力是新型电力系统稳定运行的重要增量,其容量预测与配置受多种因素制约。针对能源结构转型背景下面临的因储能容量需求动态变化而难以预测,进而影响源网荷储协调规划建设的问题,该文分析电力系统灵活性调节能力的影响因素,研究包括火电、水电、储能等各灵活性调节资源的装机容量以及调节成本的发展趋势,并对火电机组深度调峰成本进行分段线性化处理,降低计算的复杂度,以获得灵活性调节容量的成本最低为优化目标,综合考虑各调节资源的能量、功率约束,建立储能容量预测模型,并将其转换为混合整数线性规划的形式,调用商业优化求解器CPLEX进行求解。该模型基于系统中现有调节资源的调节能力,在目前新能源发电量占比不断增大的情况下,对储能的容量进行预测。算例分析表明所提模型能在保证系统经济运行的前提下,对储能的容量进行动态预测,所配置的储能有效促进了风电和光伏的消纳。

Abstract

The flexibility regulation capacity based on energy storage is an important increment for the stable operation of new power systems, and its capacity prediction and allocation are constrained by various factors. To address the problem of difficult to predict the dynamic change of energy storage capacity demand in the context of energy structure transformation, which in turn affects the coordinated planning and construction of source-grid-load-storage, this paper analyzes the influencing factors of power system flexibility regulation capacity, studies the installed capacity of each flexibility regulation resource including thermal power, hydropower, and energy storage as well as the development trend of regulation cost, and carries out segmental linearization of the deep ly peaking cost of thermal power units in order to reduce the complexity of the calculation. Taking the lowest cost of flexible regulation capacity as the optimization objective, the energy and power constraints of each regulation resource are considered comprehensively, and an energy storage capacity prediction model is established. The model is converted to the form of mixed integer linear programming. which is solved by calling the commercial optimization solver CPLEX. The model is based on the regulation capacity of the existing regulation resources in the system and considers that with the increasing proportion of new energy generation, the energy storage capacity is predicted. The analysis shows that the proposed model can make dynamic prediction of the capacity of energy storage under the premise of ensuring the economic operation of the system, and the allocated energy storage can effectively promote the consumption of wind power and photovoltaic.

关键词

电池储能 / 电力系统规划 / 约束优化 / 混合整数线性规划 / 线性化新型电力系统

Key words

battery storage / electric power system planning / constrained optimization / mixed-integer linear programming / vinearization / new electric power system

引用本文

导出引用
徐君威, 李爱魁, 李武峰, 李相俊, 全慧. 基于灵活性调节资源动态演变的储能容量预测[J]. 太阳能学报. 2024, 45(8): 17-26 https://doi.org/10.19912/j.0254-0096.tynxb.2023-0660
Xu Junwei, Li Aikui, Li Wufeng, Li Xiangjun, Quan Hui. PREDICTION OF ENERGY STORAGE CAPACITY BASED ON FLEXIBLE REGULATION OF RESOURCE DYNAMIC EVOLUTION[J]. Acta Energiae Solaris Sinica. 2024, 45(8): 17-26 https://doi.org/10.19912/j.0254-0096.tynxb.2023-0660
中图分类号: TM73   

参考文献

[1] 国家发展改革委, 国家能源局. 关于加快推动新型储能发展的指导意见[EB/OL]. http://www.gov.cn/zhengce/zhengceku/2021-07/24/content_5627088.htm, 2021-07-24.
National Development and Reform Commission, National Energy Administration. Guiding opinions on accelerating the development of new energy storage[EB/OL]. http://www.gov.cn/zhengce/zhengceku/2021-07/24/content_5627088.htm, 2021-07-24.
[2] 谢小荣, 马宁嘉, 刘威, 等. 新型电力系统中储能应用功能的综述与展望[J]. 中国电机工程学报, 2023, 43(1): 158-169.
XIE X R, MA N J, LIU W, et al.Functions of energy storage in renewable energy dominated power systems: review and prospect[J]. Proceedings of the CSEE, 2023, 43(1): 158-169.
[3] 李建林, 屈树慷, 马速良, 等. 电池储能系统辅助电网调频控制策略研究[J]. 太阳能学报, 2023, 44(3): 326-335.
LI J L, QU S K, MA S L, et al.Research on frequency modulation control strategy of auxiliary power grid in battery energy storage system[J]. Acta energiae solaris sinica, 2023, 44(3): 326-335.
[4] WEI Z F, SU H L, XU Z P, et al.Application of distributed energy storage in new power system[C]//11th International Conference on Power and Energy Systems (ICPES). Shanghai, China, 2021.
[5] XU A Q, HE C, ZHANG M, et al.Day-Ahead scheduling with renewable generation considering shared energy storage[C]//4th Asia Energy and Electrical Engineering Symposium (AEEES). Chengdu, China, 2022.
[6] 王仁顺, 赵宇, 马福元, 等. 受端电网高比例可再生能源消纳的运行瓶颈分析与储能需求评估[J]. 电网技术, 2022, 46(10): 3777-3787.
WANG R S, ZHAO Y, MA F Y, et al.Operation bottleneck analysis and energy storage demand evaluation for high proportion renewable energy consumption in receiving-end grid[J]. Power system technology, 2022, 46(10): 3777-3787.
[7] 李秀慧, 崔炎. 考虑调峰调频需求的新能源电网储能优化配置[J]. 储能科学与技术, 2022, 11(11): 3594-3602.
LI X H, CUI Y.Optimal allocation of energy storage in renewable energy grid considering the demand of peak and frequency regulation[J]. Energy storage science and technology, 2022, 11(11): 3594-3602.
[8] 刘仲民, 齐国愿, 高敬更, 等. 基于自适应VMD的混合储能容量优化配置研究[J]. 太阳能学报, 2022, 43(4): 75-81.
LIU Z M, QI G Y, GAO J G, et al.Research on optimal configuration of hybrid energy storage capacity based on adaptive VMD[J]. Acta energiae solaris sinica, 2022, 43(4): 75-81.
[9] WANG S Y, GENG G C, MA J C, et al.Operational bottleneck identification based energy storage investment requirement analysis for renewable energy integration[J]. IEEE transactions on sustainable energy, 2021, 12(1): 92-102.
[10] 张东辉, 康重庆, 卢洵, 等. 高比例新能源系统中储能配置规模论证[J]. 南方电网技术, 2022, 16(4): 3-11.
ZHANG D H, KANG Z Q, LU X, et al.Demonstration on the scale of energy storage deployment in high-proportion new energy power system[J]. Southern power system technology, 2022, 16(4): 3-11.
[11] 刘颖明, 王瑛玮, 王晓东, 等. 基于蚁狮算法的风电集群储能容量配置优化方法[J]. 太阳能学报, 2021, 42(1): 431-437.
LIU Y M, WANG Y W, WANG X D, et al.Optimization of storage capacity allocation in wind farm cluster based on ant lion optimization algorithm[J]. Acta energiae solaris sinica, 2021, 42(1): 431-437.
[12] 刘钊汛, 秦亮, 杨诗琦, 等. 面向新型电力系统的电力电子变流器虚拟同步控制方法评述[J]. 电网技术, 2023, 47(1): 1-16.
LIU Z X, QIN L, YANG S Q, et al.Review on virtual synchronous generator control technology of power electronic converter in power system based on new energy[J]. Power system technology, 2023, 47(1): 1-16.
[13] 林毅, 潘玺安, 林章岁, 等. 含高比例核电的电力系统调峰技术综述[J]. 现代电力, 2020, 37(1): 51-58.
LIN Y, PAN X A, LIN Z S, et al.Review of peak regulation for power system with a high penetration of nuclear power[J]. Modern electric power, 2020, 37(1): 51-58.
[14] 何方波, 赵明, 王楷, 等. 考虑需求响应的源荷协调多目标优化方法[J]. 电网与清洁能源, 2021, 37(10): 51-58.
HE F B, ZHAO M, WANG K, et al.A multi objective optimization method of source load coordination considering demand response[J]. Power system and clean energy, 2021, 37(10): 51-58.
[15] 肖晋宇, 侯金鸣, 杜尔顺, 等. 支撑电力系统清洁转型的储能需求量化模型与案例分析[J]. 电力系统自动化, 2021, 45(18): 9-17.
XIAO J Y, HOU J M, DU E S, et al.Quantitative model and case study of energy storage demand supporting clean transition of electric power system[J]. Automation of electric power systems, 2021, 45(18): 9-17.
[16] 中国电力企业联合会. 中国电力行业年度发展报告2020[M]. 北京: 中国市场出版社, 2020.
China Electricity Council.Annual development report of China’s power industry 2020[M]. Beijing: China Market Press, 2020.
[17] 中国电力企业联合会. 中国电力行业年度发展报告2021[M]. 北京:中国市场出版社, 2021.
China Electricity Council.Annual development report of China’s power industry 2021[M]. Beijing: China Market Press , 2021.
[18] 中国电力企业联合会. 中国电力行业年度发展报告2022[M]. 北京:中国市场出版社, 2022.
China Electricity Council.Annual development report of China’s power industry 2022[M]. Beijing: China Market Press , 2022.
[19] 邹兰青. 规模风电并网条件下火电机组深度调峰多角度经济性分析[D]. 北京: 华北电力大学, 2017.
ZOU L Q.Multi-angle economic analysis on deep peak regulation of thermal power units with large-scale wind power integration[D]. Beijing: North China Electric Power University, 2017.
[20] 林俐, 邹兰青, 周鹏, 等. 规模风电并网条件下火电机组深度调峰的多角度经济性分析[J]. 电力系统自动化, 2017, 41(7): 21-27.
LIN L, ZOU L Q, ZHOU P, et al.Multi-angle economic analysis on deep peak regulation of thermal power units with large-scale wind power integration[J]. Automation of electric power systems, 2017, 41(7): 21-27.
[21] 林俐, 田欣雨, 蔡雪瑄. 考虑附加成本的燃气机组深度调峰及电力系统能源效率[J]. 电力系统自动化, 2018, 42(11): 16-23.
LIN L, TIAN X Y, CAI X X.Deep peak shaving of gas turbine and energy efficiency of power system considering additional cost[J]. Automation of electric power systems, 2018, 42(11): 16-23.
[22] 夏鹏. 高比例新能源接入电网的广域源荷协调优化调度方法[D]. 北京: 华北电力大学, 2020.
XIA P.Coordinated optimal dispatching method of wide area source-load for power grid with high proportion of renewable energy[D]. Beijing: North China Electric Power University, 2020.
[23] 何颖源, 陈永翀, 刘勇, 等. 储能的度电成本和里程成本分析[J]. 电工电能新技术, 2019, 38(9): 1-10.
HE Y Y, CHEN Y C, LIU Y, et al.Analysis of cost per kilowatt-hour and cost per mileage for energy storage technologies[J]. Advanced technology of electrical engineering and energy, 2019, 38(9): 1-10.
[24] CARRION M, ARROYO J M.A computationally efficient mixed-integer linear formulation for the thermal unit commitment problem[J]. IEEE transactions on power systems, 2006, 21(3): 1371-1378.
[25] 郭良杰, 王德林, 谢棚, 等. 高风电渗透下电网调峰运行时的频率稳定控制策略研究[J]. 热力发电, 2022, 51(10): 103-113.
GUO L J, WANG D L, XIE P, et al.Research on frequency stability control strategy of power grid peak shaving operation under high wind power penetration[J]. Thermal power generation, 2022, 51(10): 103-113.
[26] 王凯丰, 谢丽蓉, 乔颖, 等. 电池储能提高电力系统调频性能分析[J]. 电力系统自动化, 2022, 46(1): 174-181.
WANG K F, XIE L R, QIAO Y, et al.Analysis of frequency regulation performance of power system improved by battery energy storage[J]. Automation of electric power systems, 2022, 46(1): 174-181.

基金

国家电网公司总部科技项目(5400-202199389A-0-0-00)

PDF(1067 KB)

Accesses

Citation

Detail

段落导航
相关文章

/