首先,在构建太阳池一维瞬态模型的基础上,利用有限差分法对太阳池在不同结构尺寸和提热速率下的热性能进行数值仿真分析;进一步,结合数值仿真结果设计太阳池集成供热系统,探讨其在普通居民建筑供热方面的供热性能。结果表明,太阳池内温度将会因其结构尺寸的不同而产生差异,且当采用最佳结构尺寸时,系统将获得最高温度和能源效率。同时,为实现太阳池存储热量的有效利用,系统提热量应低于其最大提热速率。对于深度为1.5 m的小型太阳池,其下对流层全年温度在66.68~106.77 ℃间变化,年均能效为2.52%。同时,当以此小型太阳池为建筑面积200 m2的普通住户供应日常生活所需热能时,应配套太阳池面积至少为250 m2。
Abstract
Firstly, based on the one-dimensional transient model of solar pond, this paper simulates the thermal performance of solar pond under different structure sizes and heat extraction rates by using the finite difference method. Moreover, the integrated solar pond heating system is designed and its performance for domestic thermal energy supply is explored based on the numerical simulation results. The results show that the temperature of solar pond varies depending on the structure size, and solar pond obtains the highest temperature and energy efficiency when the optimal structural size is selected. Meanwhile, the heat extraction rate should be lower than its maximum value to achieve the efficient utilization of heat stored in the solar pond. For a solar pond with depth of 1.5 m, the temperature of LCZ varies from 66.68 ℃ to 106.77 ℃ throughout the year, and the average annual energy efficiency is 2.52%. Furthermore, a solar pond with area of more than 250 m2 is needed to meet the daily heat load demand for a normal household with a floor area of 200 m2.
关键词
太阳池 /
盐度梯度 /
数值分析 /
效率 /
储热 /
供热
Key words
solar pond /
salinity gradient /
numerical analysis /
efficiency /
heat storage /
heating
{{custom_sec.title}}
{{custom_sec.title}}
{{custom_sec.content}}
参考文献
[1] 张学林, 张通, 薛小代, 等. 盐梯度太阳池Kalina循环发电系统性能研究[J]. 可再生能源, 2020, 38(6): 738-744.
ZHANG X L, ZHANG T, XUE X D, et al.Performance study of a Kalina cycle power system with salt gradient solar pond[J]. Renewable energy resources, 2020, 38(6): 738-744.
[2] 郭永庆, 张通, 陈来军, 等. 盐梯度太阳池的关键技术及发展现状综述[J]. 太阳能, 2020(11): 9-23.
GUO Y Q, ZHANG T, CHEN L J, et al.Review of key technologies and development status of salt gradient solar pond[J]. Solar energy, 2020(11): 9-23.
[3] 李楠, 高攀, 刘佳伟, 等. Soret效应和Dufour效应对盐梯度太阳池热盐双扩散的影响研究[J]. 太阳能学报, 2021, 42(6): 227-233.
LI N, GAO P, LIU J W, et al.Impact study of soret effect and dufour effect on double diffusion in salt gradiert solar pond[J]. Acta energiae solaris sinica, 2021, 42(6): 227-233.
[4] CHAKRABARTY S G, WANKHEDE U S, SHELKE R S, et al.Investigation of temperature development in salinity gradient solar pond using a transient model of heat transfer[J]. Solar energy, 2020, 202: 32-44.
[5] KHALILIAN M, POURMOKHTAR H, ROSHAN A.Effect of heat extraction mode on the overall energy and exergy efficiencies of the solar ponds: a transient study[J]. Energy, 2018, 154: 27-37.
[6] GANGULY S, DATE A, AKBARZADEH A.On increasing the thermal mass of a salinity gradient solar pond with external heat addition: a transient study[J]. Energy, 2019, 168: 43-56.
[7] ALCARAZ A, MONTALÀ M, VALDERRAMA C, et al.Increasing the storage capacity of a solar pond by using solar thermal collectors: heat extraction and heat supply processes using in-pond heat exchangers[J]. Solar energy, 2018, 171: 112-121.
[8] 王华, 张春阳, 马晓蒙. 石蜡/泡沫铝复合相变材料对太阳池热性能的影响[J]. 热科学与技术, 2022, 21(5): 453-461.
WANG H, ZHANG C Y, MA X M.Effect of paraffin/aluminum foam composite phase change materials on thermal performance of solar pond[J]. Journal of thermal science and technology, 2022, 21(5): 453-461.
[9] BEIKI H, SOUKHTANLOU E.Improvement of salt gradient solar ponds' performance using nanoparticles inside the storage layer[J]. Applied nanoscience, 2019, 9(2): 243-254.
[10] WANG H, WU Q, MEI Y Y, et al.A study on exergetic performance of using porous media in the salt gradient solar pond[J]. Applied thermal engineering, 2018, 136: 301-308.
[11] DAS R, GANGULY S.A comprehensive review on solar pond research in India: past, present and future[J]. Solar energy, 2022, 247: 55-72.
[12] 刘长志, 孙文策. 双热源太阳池热泵技术的应用研究[J]. 热科学与技术, 2009, 8(1): 80-84.
LIU C Z, SUN W C.Applied research on double heat source solar pond heat pump technology[J]. Journal of thermal science and technology, 2009, 8(1): 80-84.
[13] DE LEÓN-RUIZ J E, CARVAJAL-MARISCAL I, ZACARÍAS A, et al. Performance of a shallow solar pond coupled with a heat pump cycle for thermal energy in net zero-energy buildings[J]. Applied thermal engineering, 2021, 199: 117601.
[14] 刘宏升, 姜霖松, 吴丹, 等. 基于二维数值模拟的梯形太阳池特性分析[J]. 太阳能学报, 2017, 38(1): 148-155.
LIU H S, JIANG L S, WU D, et al.Characteristic analysis of a trapezoidal solar pond based on two-dimensional numerical simulation[J]. Acta energiae solaris sinica, 2017, 38(1): 148-155.
[15] LU H M, WALTON J C, SWIFT A H P. Desalination coupled with salinity-gradient solar ponds[J]. Desalination, 2001, 136(1/2/3): 13-23.
[16] DATE A, YAAKOB Y, DATE A, et al.Heat extraction from non-convective and lower convective zones of the solar pond: a transient study[J]. Solar energy, 2013, 97: 517-528.
[17] NASA. The POWER Project[DS/EL].https://power.larc.nasa.gov.
[18] GB 50015—2019. 建筑给水排水设计标准[S].
GB 50015—2019. Standard for design of building water supply and drainage[S].
[19] EL MANSOURI A, HASNAOUI M, AMAHMID A, et al.Transient theoretical model for the assessment of three heat exchanger designs in a large-scale salt gradient solar pond: energy and exergy analysis[J]. Energy conversion and management, 2018, 167: 45-62.
基金
青海省科技计划项目(2018-ZJ-774); 青海大学青年科研基金(2020-QGY-14)