42对棒环形布棒还原炉能量耗散研究

徐倩, 彭中, 李寿琴, 谢刚, 侯彦青, 马文会

太阳能学报 ›› 2024, Vol. 45 ›› Issue (9) : 268-275.

PDF(2460 KB)
欢迎访问《太阳能学报》官方网站,今天是
PDF(2460 KB)
太阳能学报 ›› 2024, Vol. 45 ›› Issue (9) : 268-275. DOI: 10.19912/j.0254-0096.tynxb.2023-0672

42对棒环形布棒还原炉能量耗散研究

  • 徐倩1, 彭中2,3, 李寿琴2,3, 谢刚4, 侯彦青1, 马文会1
作者信息 +

STUDY ON ENERGY DISSIPATION IN 42 PAIRS OF ROD REDUCTION FURNACE

  • Xu Qian1, Peng Zhong2,3, Li Shouqin2,3, Xie Gang4, Hou Yanqing1, Ma Wenhui1
Author information +
文章历史 +

摘要

由于无法对大型还原炉环状硅棒排布方式对能耗的影响做出准确判断,对42对棒西门子多晶硅还原炉进行仿真模拟计算,建立两种环状硅棒布棒方式(三环排布、四环排布)的还原炉模型。通过对还原炉的炉行为及棒行为分析发现,硅棒直径加大能耗也会相应加大,且这种变化受炉内流场和温度场共同影响;同时,还原炉内内环硅棒辐射能耗随硅棒直径的增大呈先增大后减小的变化趋势,而排列在外环的硅棒辐射损耗则随硅棒直径的增大而不断增大。针对42对棒西门子还原炉内硅棒的排布方法,提出选用硅棒三环排布的方式可达到降低该还原炉总能耗的目的。

Abstract

On account of the complexity of investigating the impact of annular silicon rod arrangement on energy consumption in Siemens polycrystalline silicon furnaces, this study establishes physical models of two annular silicon rod distribution modes in 42 pairs of furnaces: three-ring arrangements and four-ring arrangements and conducts simulation calculations. Analysis of furnace behavior and silicon rod behavior reveals that energy consumption increases with the diameter of the silicon rod, and that the flow field and temperature field influence this change in the furnace. Furthermore, the radiation energy loss with the inner ring silicon rod in the reduction furnace increases first and then decreases with the increase of the diameter of the silicon rod, while the radiation loss of the outer ring silicon rod increases with the increase of the diameter of the silicon rod. According to the arrangement method of silicon rods in 42 pairs of Siemens reduction furnace, the three-ring arrangement of silicon rods is proposed to reduce the energy consumption of the furnace and achieve the purpose of energy saving.

关键词

光伏发电 / 数值模拟 / 多晶硅 / 辐射 / 西门子还原炉 / 节能降耗

Key words

PV power / numerical simulation / polysilicon / radiation / siemens reactor / energy conservation and consumption reduction

引用本文

导出引用
徐倩, 彭中, 李寿琴, 谢刚, 侯彦青, 马文会. 42对棒环形布棒还原炉能量耗散研究[J]. 太阳能学报. 2024, 45(9): 268-275 https://doi.org/10.19912/j.0254-0096.tynxb.2023-0672
Xu Qian, Peng Zhong, Li Shouqin, Xie Gang, Hou Yanqing, Ma Wenhui. STUDY ON ENERGY DISSIPATION IN 42 PAIRS OF ROD REDUCTION FURNACE[J]. Acta Energiae Solaris Sinica. 2024, 45(9): 268-275 https://doi.org/10.19912/j.0254-0096.tynxb.2023-0672
中图分类号: TB332   

参考文献

[1] 张攀, 王伟文, 范军领, 等. 三维还原炉内多晶硅化学气相沉积的数值模拟[J]. 太阳能学报, 2012, 33(3): 511-516.
ZHANG P, WANG W W, FAN J L, et al.Numerical simulation of the chemical vapor deposition of polycrystalline silicon in a 3D furnace[J]. Acta energiae solaris sinica, 2012, 33(3): 511-516.
[2] LEWIS N S.Toward cost-effective solar energy use[J]. Science, 2007, 315(5813): 798-801.
[3] JUNG H, PARK J H, KANG S O, et al. Computational fluid dynamics modeling of mono-silane siemens reactor[J]. Japanese journal of applied physics, 2012, 51(10S): 10NA10.
[4] 徐远志, 刘阳赞, 侯彦清, 等. 12对棒多晶硅还原炉传热的数值模拟研究[J]. 云南冶金, 2018, 47(1): 57-62.
XU Y Z, LIU Y Z, HOU Y Q, et al.Numerical simulation study on heat transfer in 12 rod polysilicon CVD reactor[J]. Yunnan metallurgy, 2018, 47(1): 57-62.
[5] HESSE K, SCHINDLBECK E, DORNBERGER E, et al.Status and development of solar-grade silicon feedstock[C]//European Photovoltaic Solar Energy Conference, Hamburg, Germany, 2009.
[6] WANG C J, WANG T F, LI P L, et al.Recycling of SiCl4 in the manufacture of granular polysilicon in a fluidized bed reactor[J]. Chemical engineering journal, 2013, 220: 81-88.
[7] 梁世民, 张胜涛, 何银凤, 等. 基于数值模拟电子级多晶硅还原炉流动结构改进研究[J]. 人工晶体学报, 2019, 48(3): 545-549.
LIANG S M, ZHANG S T, HE Y F, et al.Flow structure improvement of electronic grade polysilicon reactor based on numerical simulation[J]. Journal of synthetic crystals, 2019, 48(3): 545-549.
[8] 陈其国, 钟真武, 高建, 等. 多晶硅制备中节能降耗技术的研究[J]. 氯碱工业, 2012, 48(9): 28-30.
CHEN Q G, ZHONG Z W, GAO J, et al.Study on energy-saving and consumption-reducing technologies in polycrystalline silicon preparation[J]. Chlor-alkali industry, 2012, 48(9): 28-30.
[9] COSO G D.Chemical decomposition of silanes for the production of solar grade silicon[D]. Spain: Universidad Politecnica de Madrid, 2010.
[10] 方文宝, 周扬民, 聂陟枫, 等. 多晶硅还原炉中硅棒的直流电加热模型[J]. 太阳能学报, 2018, 39(8): 2287-2292.
FANG W B, ZHOU Y M, NIE Z F, et al.Direct-current electric heating model of silicon rod in polysilicon reduction furnace[J]. Acta energiae solaris sinica, 2018, 39(8): 2287-2292.
[11] 聂陟枫, 戴恩睿, 谢刚, 等. 多晶硅还原炉高频交流电加热机制研究[J]. 太阳能学报, 2021, 42(2): 451-458.
NIE Z F, DAI E R, XIE G, et al.Investigation on heating mechanism of high frequency alternating current in polysilicon reduction furnace[J]. Acta energiae solaris sinica, 2021, 42(2): 451-458.
[12] 马越. 多晶硅还原炉内温度场模拟[D]. 徐州: 中国矿业大学, 2019.
MA Y.Simulation of temperature field in polysilicon reduction furnace[D]. Xuzhou: China University of Mining and Technology, 2019.
[13] 吴建宏. 基于CFD模拟优化多晶硅还原炉内的流场及温度场[J]. 清洗世界, 2021, 37(10): 43-44.
WU J H.Optimization of flow field and temperature field in polysilicon reduction furnace based on CFD simulation[J]. Cleaning world, 2021, 37(10): 43-44.

基金

国家自然科学基金(22168019)

PDF(2460 KB)

Accesses

Citation

Detail

段落导航
相关文章

/