计及灵活性和源荷不确定性的储能优化配置方法

曹林锋, 呼斯乐, 杨家强, 赵禹灿, 王渊, 陈超

太阳能学报 ›› 2024, Vol. 45 ›› Issue (9) : 623-629.

PDF(1010 KB)
欢迎访问《太阳能学报》官方网站,今天是
PDF(1010 KB)
太阳能学报 ›› 2024, Vol. 45 ›› Issue (9) : 623-629. DOI: 10.19912/j.0254-0096.tynxb.2023-0676

计及灵活性和源荷不确定性的储能优化配置方法

  • 曹林锋1, 呼斯乐1,2, 杨家强3, 赵禹灿3, 王渊4, 陈超1
作者信息 +

OPTIMAL CONFIGURATION METHOD OF ENERGY STORAGE CONSIDERING FLEXIBILITY AND SOURCE-LOAD UNCERTAINTY

  • Cao Linfeng1, Hu Sile1,2, Yang Jiaqiang3, Zhao Yucan3, Wang Yuan4, Chen Chao1
Author information +
文章历史 +

摘要

提出一种计及灵活性和源荷不确定性的储能容量优化配置方法,考虑火电机组和储能对灵活性的影响,并采用模糊机会约束描述源荷不确定性,综合考虑储能投资成本、系统运行成本、灵活性约束和源荷不确定性,建立双层储能配置模型,采用粒子群算法和CPLEX商业求解器进行求解。基于改进的IEEE 30节点系统进行对比验证,结果表明所提模型较传统模型的储能配置结果更合理,系统运行成本更低。

Abstract

Energy storage is an adjustable resource to enhance system flexibility, however, due to its cost constraint, it is difficult to allocate large amounts of energy storage in power systems. To this end, an optimal allocation method of energy storage capacity that considers flexibility and source-load uncertainty is proposed, considering the impact of thermal units and energy storage on flexibility in the system, and using fuzzy chance constraints to describe source-load uncertainty. . Based on the improved IEEE 30-node system for comparison and validation, the results show that the proposed model has more reasonable energy storage configuration results and lower system operation cost than the traditional model.

关键词

电力系统规划 / 储能 / 不确定性分析 / 可再生能源 / 灵活性 / 容量配置

Key words

electric power system planning / energy storage / uncertainty analysis / renewable energy / flexibility / capacity configuration

引用本文

导出引用
曹林锋, 呼斯乐, 杨家强, 赵禹灿, 王渊, 陈超. 计及灵活性和源荷不确定性的储能优化配置方法[J]. 太阳能学报. 2024, 45(9): 623-629 https://doi.org/10.19912/j.0254-0096.tynxb.2023-0676
Cao Linfeng, Hu Sile, Yang Jiaqiang, Zhao Yucan, Wang Yuan, Chen Chao. OPTIMAL CONFIGURATION METHOD OF ENERGY STORAGE CONSIDERING FLEXIBILITY AND SOURCE-LOAD UNCERTAINTY[J]. Acta Energiae Solaris Sinica. 2024, 45(9): 623-629 https://doi.org/10.19912/j.0254-0096.tynxb.2023-0676
中图分类号: TM715   

参考文献

[1] 史连军, 周琳, 庞博, 等. 中国促进清洁能源消纳的市场机制设计思路[J]. 电力系统自动化, 2017, 41(24): 83-89.
SHI L J, ZHOU L, PANG B, et al.Design ideas of electricity market mechanism to improve accommodation of clean energy in China[J]. Automation of electric power systems, 2017, 41(24): 83-89.
[2] 康重庆, 姚良忠. 高比例可再生能源电力系统的关键科学问题与理论研究框架[J]. 电力系统自动化, 2017, 41(9): 2-11.
KANG C Q, YAO L Z.Key scientific issues and theoretical research framework for power systems with high proportion of renewable energy[J]. Automation of electric power systems, 2017, 41(9): 2-11.
[3] 邓婷婷, 娄素华, 田旭, 等. 计及需求响应与火电深度调峰的含风电系统优化调度[J]. 电力系统自动化, 2019, 43(15): 34-41.
DENG T T, LOU S H, TIAN X, et al.Optimal dispatch of power system integrated with wind power considering demand response and deep peak regulation of thermal power units[J]. Automation of electric power systems, 2019, 43(15): 34-41.
[4] 王仁顺, 赵宇, 马福元, 等. 受端电网高比例可再生能源消纳的运行瓶颈分析与储能需求评估[J]. 电网技术, 2022, 46(10): 3777-3787.
WANG R S, ZHAO Y, MA F Y, et al.Operational bottleneck analysis and energy storage demand evaluation for high proportional renewable energy consumption in receiving-end grid[J]. Power system technology, 2022, 46(10): 3777-3787.
[5] 吴智泉, 贾纯超, 陈磊, 等. 新型电力系统中储能创新方向研究[J]. 太阳能学报, 2021, 42(10): 444-451.
WU Z Q, JIA C C, CHEN L, et al.Research on innovative direction of energy storage in new power system construction[J]. Acta energiae solaris sinica, 2021, 42(10): 444-451.
[6] 石涛, 张斌, 晁勤, 等. 兼顾平抑风电波动和补偿预测误差的混合储能容量经济配比与优化控制[J]. 电网技术, 2016, 40(2): 477-483.
SHI T, ZHANG B, CHAO Q, et al.Economic storage ratio and optimal control of hybrid energy capacity combining stabilized wind power fluctuations with compensated predictive errors[J]. Power system technology, 2016, 40(2): 477-483.
[7] BLUDSZUWEIT H, DOMINGUEZ-NAVARRO J A. A probabilistic method for energy storage sizing based on wind power forecast uncertainty[J]. IEEE transactions on power systems, 2011, 26(3): 1651-1658.
[8] JIANG Y H, KANG L, LIU Y Z.Optimal configuration of battery energy storage system with multiple types of batteries based on supply-demand characteristics[J]. Energy, 2020, 206: 118093.
[9] 彭春华, 陈露, 张金克, 等. 基于分类概率机会约束IGDT的配网储能多目标优化配置[J]. 中国电机工程学报, 2020, 40(9): 2809-2819.
PENG C H, CHEN L, ZHANG J K, et al.Multi-objective optimal allocation of energy storage in distribution network based on classified probability chance constraint information gap decision theory[J]. Proceedings of the CSEE, 2020, 40(9): 2809-2819.
[10] 李笑竹, 王维庆, 王海云, 等. 基于鲁棒优化的风光储联合发电系统储能配置策略[J]. 太阳能学报, 2020, 41(8): 67-78.
LI X Z, WANG W Q, WANG H Y, et al.Energy storage allocation strategy of wind-solar-storage combined system based on robust optimization[J]. Acta energiae solaris sinica, 2020, 41(8): 67-78.
[11] 杨立滨, 曹阳, 魏韡, 等. 计及风电不确定性和弃风率约束的风电场储能容量配置方法[J]. 电力系统自动化, 2020, 44(16): 45-52.
YANG L B, CAO Y, WEI W, et al.Configuration method of energy storage for wind farms considering wind power uncertainty and wind curtailment constraint[J]. Automation of electric power systems, 2020, 44(16): 45-52.
[12] XIONG P, SINGH C.Optimal planning of storage in power systems integrated with wind power generation[J]. IEEE transactions on sustainable energy, 2016, 7(1): 232-240.
[13] 朱嘉远, 刘洋, 许立雄, 等. 风电全消纳下的配电网储能可调鲁棒优化配置[J]. 电网技术, 2018, 42(6): 1875-1883.
ZHU J Y, LIU Y, XU L X, et al.Adjustable robust optimization for energy storage system in distribution network based on wind power full accommodation[J]. Power system technology, 2018, 42(6): 1875-1883.
[14] 施云辉, 王橹裕, 陈玮, 等. 基于风电预测误差聚类的分布鲁棒含储能机组组合[J]. 电力系统自动化, 2019, 43(22): 3-12, 121.
SHI Y H, WANG L Y, CHEN W, et al.Distributed robust unit commitment with energy storage based on forecasting error clustering of wind power[J]. Automation of electric power systems, 2019, 43(22): 3-12, 121.
[15] 鲁宗相, 李海波, 乔颖. 含高比例可再生能源电力系统灵活性规划及挑战[J]. 电力系统自动化, 2016, 40(13): 147-158.
LU Z X, LI H B, QIAO Y.Power system flexibility planning and challenges considering high proportion of renewable energy[J]. Automation of electric power systems, 2016, 40(13): 147-158.
[16] 崔杨, 周慧娟, 仲悟之, 等. 考虑源荷两侧不确定性的含风电电力系统低碳调度[J]. 电力自动化设备, 2020, 40(11): 85-91.
CUI Y, ZHOU H J, ZHONG W Z, et al.Low-carbon scheduling of power system with wind power considering uncertainty of both source and load sides[J]. Electric power automation equipment, 2020, 40(11): 85-91.

基金

内蒙古电力(集团)有限责任公司科技项目(2022-07)

PDF(1010 KB)

Accesses

Citation

Detail

段落导航
相关文章

/