α—O—4型木质素二聚体分子间相互作用机理研究

崔达, 尹鹤霖, 吴爽, 刘斌, 王琦, 王擎

太阳能学报 ›› 2024, Vol. 45 ›› Issue (9) : 595-602.

PDF(1619 KB)
欢迎访问《太阳能学报》官方网站,今天是
PDF(1619 KB)
太阳能学报 ›› 2024, Vol. 45 ›› Issue (9) : 595-602. DOI: 10.19912/j.0254-0096.tynxb.2023-0679

α—O—4型木质素二聚体分子间相互作用机理研究

  • 崔达1, 尹鹤霖1, 吴爽1, 刘斌2, 王琦2, 王擎1
作者信息 +

STUDY ON MECHANISM OF INTERMOLECULAR INTERACTION IN α—O—4 TYPE LIGNIN DIMER

  • Cui Da1, Yin Helin1, Wu Shuang1, Liu Bin2, Wang Qi2, Wang Qing1
Author information +
文章历史 +

摘要

不同于传统单分子分解机制,聚焦双分子反应热解机理,采用密度泛函理论(DFT)的GGA/RPBE方法,选取α—O—4型木质素二聚体模型化合物苄基苯基醚(BPE)为研究对象,确定其中存在的分子间相互作用关系以及关键产物在热解过程中形成的化学途径,并重点研究木质素中取代基对分子间相互作用关系产生的影响。研究结果表明,在单分子反应中,取代基会提高各个键的活性,CH3取代基会促进C—O键的均裂。木质素分子与自由基之间存在强烈的相互作用,但取代基会抑制分子间相互作用关系,且取代基上H自由基参与反应的意向弱于木质素连接键上的H自由基。4种α—O—4型木质素脱氢二聚体自由基主要可能发生均裂的键是O—C芳香族键,而非Cα—O键。

Abstract

Different from the traditional unimolecular decomposition mechanism, focusing on the bimolecular reaction pyrolysis mechanism, the α—O—4 type lignin dimer model compound benzyl phenyl ether (BPE) is selected as the research object. The density functional theory (DFT) GGA/RPBE method and DNP basis set are used to perform geometric optimization and frequency calculations on the reactants, intermediates, transition states, and products during the pyrolysis process. The study focuses on the impact of substituents in lignin on the intermolecular interaction relationships. The results show that substituents will increase the activity of each chemical bond in unimolecular reactions, for example, CH3 substituents will significantly promote the homolytic cleavage of C—O bonds. For bimolecular reactions, although intense interactions exist between lignin molecules and free radicals, it is proved that the presence of substituents can inhibit the molecular interaction relationship. Furthermore, the H radicals on the substituents display weaker reactivity compared to those on the lignin—linked bonds. The O—Caromatic homolytic cleavage dominates the primary reaction pathway for dehydrodimer radicals, rather than the Cα—O bond.

关键词

生物质能 / 木质素 / 热解 / 密度泛函理论 / α—O—4 / 分子间相互作用

Key words

biomas energy / lignin / pyrolysis / density functional theory / α—O—4 / intermolecular interaction

引用本文

导出引用
崔达, 尹鹤霖, 吴爽, 刘斌, 王琦, 王擎. α—O—4型木质素二聚体分子间相互作用机理研究[J]. 太阳能学报. 2024, 45(9): 595-602 https://doi.org/10.19912/j.0254-0096.tynxb.2023-0679
Cui Da, Yin Helin, Wu Shuang, Liu Bin, Wang Qi, Wang Qing. STUDY ON MECHANISM OF INTERMOLECULAR INTERACTION IN α—O—4 TYPE LIGNIN DIMER[J]. Acta Energiae Solaris Sinica. 2024, 45(9): 595-602 https://doi.org/10.19912/j.0254-0096.tynxb.2023-0679
中图分类号: TK6   

参考文献

[1] WANG Q, WU S, CUI D, et al.Co-hydrothermal carbonization of corn stover and food waste: characterization of hydrochar, synergistic effects, and combustion characteristic analysis[J]. Journal of environmental chemical engineering, 2022, 10(6): 108716.
[2] 柏静儒, 邵佳晔, 张宏喜, 等. 碱性木质素与油页岩共热解协同作用的TG-FTIR研究[J]. 太阳能学报, 2017, 38(6): 1533-1538.
BAI J R, SHAO J Y, ZHANG H X, et al.TG-FTIR research of alkaline lignin and oil shale co-pyrolysis synergy action[J]. Acta energiae solaris sinica, 2017, 38(6): 1533-1538.
[3] 许焕焕, 葛一, 李强, 等. 氨燃料及应用技术研究进展[J]. 东北电力大学学报, 2022, 42(2): 1-13.
XU H H, GE Y, LI Q, et al.Research progress of ammonia fuel and application technology[J]. Journal of Northeast Electric Power University, 2022, 42(2): 1-13.
[4] CUI D, YIN H L, LIU Y P, et al.Effect of final pyrolysis temperature on the composition and structure of shale oil: synergistic use of multiple analysis and testing methods[J]. Energy, 2022, 252: 124062.
[5] 张婷婷. 不同种类木质素热解的反应分子动力学模拟[D]. 北京: 中国科学院大学, 2020.
ZHANG T T.Pyrolysis simulations of various lignin molecular models by ReaxFF molecular dynamics[D]. Beijing: University of Chinese Academy of Sciences, 2020.
[6] FANG Y, YIN L, YANG H P, et al.Catalytic mechanisms of potassium salts on pyrolysis of β-O-4 type lignin model polymer based on DFT study[J]. Proceedings of the Combustion Institute, 2021, 38(3): 3969-3976.
[7] 蒋晓燕, 陆强, 楚化强, 等. 磷酸催化热解木质素模化物的反应机理研究[J]. 太阳能学报, 2020, 41(2): 6-12.
JIANG X Y, LU Q, CHU H Q, et al.Mechanism study on pyrolysis of lignin model compound catalyzed by phosphoric acid[J]. Acta energiae solaris sinica, 2020, 41(2): 6-12.
[8] 蒋晓燕, 陆强, 胡斌, 等. 木质素三聚体模化物热解过程的理论研究[J]. 太阳能学报, 2018, 39(1): 170-179.
JIANG X Y, LU Q, HU B, et al.Theoretical studies on pyrolysis process of lignin trimer model compound[J]. Acta energiae solaris sinica, 2018, 39(1): 170-179.
[9] HOUSTON R W, ELDER T J, ABDOULMOUMINE N H.Investigation into the pyrolysis bond dissociation enthalpies (BDEs) of a model lignin oligomer using density functional theory (DFT)[J]. Energy & fuels, 2022, 36(3): 1565-1573.
[10] 田红, 何正文, 刘亮, 等. 基于量子化学理论的苯丙氨酸热解过程中NOx前驱体生成机理研究[J]. 太阳能学报, 2021, 42(10): 317-323.
TIAN H, HE Z W, LIU L, et al.Study on formation mechanism of NOx precursor in pyrolysis process of phenylalanine based on quantum chemistry theory[J]. Acta energiae solaris sinica, 2021, 42(10): 317-323.
[11] 黄金保, 武书彬, 雷鸣, 等. 木质素二聚体模型化合物热解机理的量子化学研究[J]. 燃料化学学报, 2015, 43(11): 1334-1343.
HUANG J B, WU S B, LEI M, et al.Quantum chemistry study on pyrolysis mechanism of lignin dimer model compound[J]. Journal of fuel chemistry and technology, 2015, 43(11): 1334-1343.
[12] 范宇阳, 雷鸣, 孔祥琛, 等. 枫木木质素热解自由基演变规律研究[J]. 太阳能学报, 2022, 43(11): 352-357.
FAN Y Y, LEI M, KONG X C, et al.Study on radical evolution during maple lignin pyrolysis[J]. Acta energiae solaris sinica, 2022, 43(11): 352-357.
[13] CUI D, YIN H L, PAN S, et al.Mechanism of generation of substituted β-O-4 lignin dimer CH4 based on bimolecular pyrolysis study[J]. Journal of the Energy Institute, 2023, 109: 101262.
[14] HE T, ZHANG Y M, ZHU Y N, et al.Pyrolysis mechanism study of lignin model compounds by synchrotron vacuum ultraviolet photoionization mass spectrometry[J]. Energy & fuels, 2016, 30(3): 2204-2208.
[15] JIANG X Y, LU Q, HU B, et al.Intermolecular interaction mechanism of lignin pyrolysis: a joint theoretical and experimental study[J]. Fuel, 2018, 215: 386-394.
[16] XIE W L, HU B, LIU Y, et al.Unraveling the radical chain mechanism in the pyrolysis of β-O-4 linked lignin: the role of aliphatic substituents[J]. Proceedings of the Combustion Institute, 2023, 39(3): 3303-3311.
[17] JIANG X Y, WANG W L, HU B, et al.Formation mechanism of CH4 during lignin pyrolysis: a theoretical study[J]. Journal of the energy institute, 2022, 100: 237-244.
[18] 段毓, 程皓, 武书彬. 基于密度泛函理论研究木质素二聚体Cα—OH基团的修饰对其热解均裂历程的影响[J]. 燃料化学学报, 2019, 47(12): 1440-1449.
DUAN Y, CHENG H, WU S B.Density functional theory study on the effect of Cα—OH functional group modification on the homolytic cracking reaction routes during the pyrolysis of lignin dimer[J]. Journal of fuel chemistry and technology, 2019, 47(12): 1440-1449.
[19] YIN L, LENG E W, GONG X, et al.Pyrolysis mechanism of β-O-4 type lignin model polymers with different oxygen functional groups on Cα[J]. Journal of analytical and applied pyrolysis, 2018, 136: 169-177.
[20] YU H, WANG S Y, SUN Y, et al.Pyrolysis mechanism law of β-O-4 lignin dimer model compounds: a density functional theory study[J]. Industrial crops and products, 2022, 180: 114746.
[21] PELZER A W, BROADBELT L J.Effects of substituents on the SN2 free energy of activation for α-O-4 lignin model compounds[J]. The journal of physical chemistry C, 2017, 121(14): 7603-7614.
[22] HUANG J B, HE C.Pyrolysis mechanism of α-O-4 linkage lignin dimer: a theoretical study[J]. Journal of analytical and applied pyrolysis, 2015, 113: 655-664.
[23] ZHU C, CAO J P, FENG X B, et al.Theoretical insight into the hydrogenolysis mechanism of lignin dimer compounds based on experiments[J]. Renewable energy, 2021, 163: 1831-1837.
[24] PARTHASARATHI R, ROMERO R A, REDONDO A, et al.Theoretical study of the remarkably diverse linkages in lignin[J]. The journal of physical chemistry letters, 2011, 2(20): 2660-2666.
[25] 黄金保, 武书彬, 程皓, 等. 木质素模化物键离解能的理论研究[J]. 燃料化学学报, 2015, 43(4): 429-436.
HUANG J B, WU S B, CHENG H, et al.Theoretical study of bond dissociation energies for lignin model compounds[J]. Journal of fuel chemistry and technology, 2015, 43(4): 429-436.
[26] 蒋晓燕, 陆强, 董晓晨, 等. 取代基对木质素三聚体模型化合物醚键均裂反应影响的密度泛函理论研究[J]. 燃料化学学报, 2016, 44(3): 335-341.
JIANG X Y, LU Q, DONG X C, et al.Theoretical study on the effects of the substituent groups on the homolysis of the ether bond in lignin trimer model compounds[J]. Journal of fuel chemistry and technology, 2016, 44(3): 335-341.
[27] CHOI Y S, SINGH R, ZHANG J, et al.Pyrolysis reaction networks for lignin model compounds: unraveling thermal deconstruction of β-O-4 and α-O-4 compounds[J]. Green chemistry, 2016, 18(6): 1762-1773.
[28] FERRIGHI L, MADSEN G K H, HAMMER B. Alkane dimers interaction: a semi-local MGGA functional study[J]. Chemical physics letters, 2010, 492(1/2/3): 183-186.
[29] FERRIGHI L, PAN Y X, GRÖNBECK H, et al. Study of alkylthiolate self-assembled monolayers on Au(111) using a semilocal meta-GGA density functional[J]. The journal of physical chemistry C, 2012, 116(13): 7374-7379.
[30] HALGREN T A, LIPSCOMB W N.The synchronous-transit method for determining reaction pathways and locating molecular transition states[J]. Chemical physics letters, 1977, 49(2): 225-232.
[31] KIM K H, BAI X L, BROWN R C.Pyrolysis mechanisms of methoxy substituted α-O-4 lignin dimeric model compounds and detection of free radicals using electron paramagnetic resonance analysis[J]. Journal of analytical and applied pyrolysis, 2014, 110: 254-263.
[32] HUANG Y, LIU S S, AKHTAR M A, et al.Volatile-char interactions during biomass pyrolysis: understanding the potential origin of char activity[J]. Bioresource technology, 2020, 316: 123938.

基金

吉林省科技发展计划(20210508052RQ; 20200403162SF)

PDF(1619 KB)

Accesses

Citation

Detail

段落导航
相关文章

/