考虑动态频率约束的多能源电力系统日前-日内优化调度

李杨, 孙斌, 吴峰, 洪飞龙, 史林军, 林克曼

太阳能学报 ›› 2024, Vol. 45 ›› Issue (2) : 406-415.

PDF(1674 KB)
欢迎访问《太阳能学报》官方网站,今天是
PDF(1674 KB)
太阳能学报 ›› 2024, Vol. 45 ›› Issue (2) : 406-415. DOI: 10.19912/j.0254-0096.tynxb.2023-0681

考虑动态频率约束的多能源电力系统日前-日内优化调度

  • 李杨1, 孙斌2, 吴峰1, 洪飞龙1, 史林军1, 林克曼1
作者信息 +

DAY-AHEAD AND INTRA-DAY OPTIMAL SCHEDULING OF MULTI-ENERGY POWER SYSTEMS CONSIDERING DYNAMIC FREQUENCY CONSTRAINTS

  • Li Yang1, Sun Bin2, Wu Feng1, Hong Feilong1, Shi Linjun1, Lin Keman1
Author information +
文章历史 +

摘要

提出考虑系统动态频率约束的含风电-电池储能-抽蓄电力系统协调优化调度策略。首先,建立含风电机组、电池储能和抽水蓄能的电力系统频率响应模型,并对系统调频响应过程进行分段线性化处理,降低计算的复杂度。然后,根据各机组的爬坡速度、启停约束、功率跟踪能力等因素的差异,建立日前-日内协调的多时间尺度优化调度模型。日前阶段制定考虑动态频率约束的火电机组和抽水蓄能的机组启停和出力计划;日内阶段优化电池储能的充放电状态计划,并调整火电和抽蓄的出力计划,促进风电消纳。最后,在含风电、变速抽蓄和电池储能的改进IEEE-39节点系统中进行算例分析,结果证明所提方法能提高系统频率稳定性,减少弃风量,兼顾电力系统经济调度和频率稳定目标。

Abstract

A coordinated optimal dispatch strategy for power system with wind power-pumped storage-battery storage is proposed considering dynamic frequency constraints. Firstly, the frequency response model of the power system including wind turbine, pumped storage units, and battery energy storage is established, the frequency regulation response process is approximated with piecewise linearization method to reduce the computational complexity. Secondly, considering ramping rates, start-stop constraints, power tracking ability of different regulation sources, a multi-time scale coordinated optimization framework including day-ahead stage and intra-day stage is established. The start-up and shutdown and output plans of thermal power units and pumped storage units considering dynamic frequency constraints are formulated in the day-ahead stage. In the intra-day dispatching stage, the charge and discharge state plan of battery energy storage is formulated, and the output plan of all units is adjusted to balance the power deviation to promote the consumption of wind power. Finally, a case study is conducted in a modified IEEE-39 node system to demonstrate the feasibility and effectiveness of the proposed model. The results show that the proposed method can improve the frequency stability of the system, promote the wind power accommodation, and give consideration to both power system economics and frequency stability.

关键词

多能源电力系统 / 动态频率约束 / 多时间尺度 / 优化调度

Key words

multi-energy power system / dynamic frequency constraint / multi-time scale / optimal dispatch

引用本文

导出引用
李杨, 孙斌, 吴峰, 洪飞龙, 史林军, 林克曼. 考虑动态频率约束的多能源电力系统日前-日内优化调度[J]. 太阳能学报. 2024, 45(2): 406-415 https://doi.org/10.19912/j.0254-0096.tynxb.2023-0681
Li Yang, Sun Bin, Wu Feng, Hong Feilong, Shi Linjun, Lin Keman. DAY-AHEAD AND INTRA-DAY OPTIMAL SCHEDULING OF MULTI-ENERGY POWER SYSTEMS CONSIDERING DYNAMIC FREQUENCY CONSTRAINTS[J]. Acta Energiae Solaris Sinica. 2024, 45(2): 406-415 https://doi.org/10.19912/j.0254-0096.tynxb.2023-0681
中图分类号: TM73   

参考文献

[1] 国家能源局. “十四五”现代能源体系规划[R].2022-03-22.
National Energy Administration. 14th five year plan for modern energy system planning[R].2022-03-22.
[2] 王佳惠, 牛玉广, 陈玥, 等. 计及火电深度调峰的高比例可再生能源电力系统日前优化调度研究[J]. 太阳能学报, 2023, 44(1): 493-499.
WANG J H, NIU Y G, CHEN Y, et al.Research on day-ahead optimal dispatching of high-proportion renewable energy power system considering deep peak load regulation of thermal power[J]. Acta energiae solaris sinica, 2023, 44(1): 493-499.
[3] 崔明勇, 靳贺, 何良策, 等. 基于风电消纳评估的电力系统鲁棒低碳经济调度[J]. 太阳能学报, 2020, 41(8): 270-280.
CUI M Y, JIN H, HE L C, et al.Robust low-carbon economic dispatch of power system based on wind power accommodation evaluation[J]. Acta energiae solaris sinica, 2020, 41(8): 270-280.
[4] 张程铭, 柳璐, 程浩忠, 等. 考虑频率安全的电力系统规划与运行优化研究综述与展望[J]. 电网技术, 2022, 46(1): 250-265.
ZHANG C M, LIU L, CHENG H Z, et al.Review and prospects of planning and operation optimization for electrical power systems considering frequency security[J]. Power system technology, 2022, 46(1): 250-265.
[5] 王博, 杨德友, 蔡国伟. 高比例新能源接入下电力系统惯量相关问题研究综述[J]. 电网技术, 2020, 44(8): 2998-3007.
WANG B, YANG D Y, CAI G W.Review of research on power system inertia related issues in the context of high penetration of renewable power generation[J]. Power system technology, 2020, 44(8): 2998-3007.
[6] 王博, 杨德友, 蔡国伟. 大规模风电并网条件下考虑动态频率约束的机组组合[J]. 电网技术, 2020, 44(7): 2513-2519.
WANG B, YANG D Y, CAI G W.Dynamic frequency constraint unit commitment in large-scale wind power grid connection[J]. Power system technology, 2020, 44(7): 2513-2519.
[7] 葛晓琳, 刘亚, 符杨, 等. 考虑惯量支撑及频率调节全过程的分布鲁棒机组组合[J]. 中国电机工程学报, 2021, 41(12): 4043-4058.
GE X L, LIU Y, FU Y, et al.Distributed robust unit commitment considering the whole process of inertia support and frequency regulations[J]. Proceedings of the CSEE, 2021, 41(12): 4043-4058.
[8] 肖白, 杨宇, 姜卓, 等. 风电-抽水蓄能联合系统中抽蓄电站容量的优化规划[J]. 太阳能学报, 2020, 41(12): 270-277.
XIAO B, YANG Y, JIANG Z, et al.Optimal planning of capacity of pumped storage power station in wind power-pumped storage system[J]. Acta energiae solaris sinica, 2020, 41(12): 270-277.
[9] TROVATO V, BIALECKI A, DALLAGI A.Unit commitment with inertia-dependent and multispeed allocation of frequency response services[J]. IEEE transactions on power systems, 2019, 34(2): 1537-1548.
[10] ZHANG C M, LIU L, CHENG H Z, et al.Frequency-constrained co-planning of generation and energy storage with high-penetration renewable energy[J]. Journal of modern power systems and clean energy, 2021, 9(4): 760-775.
[11] 王涛, 王廷涛, 刘芮, 等. 计及动态频率响应约束的高比例风电电力系统机组组合模型[J]. 高电压技术, 2021, 47(10): 3463-3479.
WANG T, WANG T T, LIU R, et al.Unit commitment model of high proportion wind power system considering dynamic frequency response constraints[J]. High voltage engineering, 2021, 47(10): 3463-3479.
[12] 徐正清, 王春明, 郑焕坤, 等. 考虑频率约束的含储能低惯量电网机组组合和经济调度[J]. 电工电能新技术, 2020, 39(11): 25-32.
XU Z Q, WANG C M, ZHENG H K, et al.Frequency constrained unit commitment and economic dispatch with storage in low-inertia power system[J]. Advanced technology of electrical engineering and energy, 2020, 39(11): 25-32.
[13] WEN Y F, LI W Y, HUANG G, et al.Frequency dynamics constrained unit commitment with battery energy storage[J]. IEEE transactions on power systems, 2016, 31(6): 5115-5125.
[14] 张怡, 张恒旭, 李常刚, 等. 电力系统频率响应模式及其量化描述[J]. 中国电机工程学报, 2021, 41(17): 5877-5887.
ZHANG Y, ZHANG H X, LI C G, et al.Power system frequency responses pattern and its quantitative analysis[J]. Proceedings of the CSEE, 2021, 41(17): 5877-5887.
[15] 张秋艳, 谢俊, 潘学萍, 等. 考虑动态频率响应的风光水互补发电短期优化调度模型[J]. 太阳能学报, 2023, 44(1): 516-524.
ZHANG Q Y, XIE J, PAN X P, et al.Short-term optimal scheduling model for wind-solar-hydro hybrid power generation system considering dynamic frequency response[J]. Acta energiae solaris sinica, 2023, 44(1): 516-524.
[16] 孙华东, 汤涌, 马世英. 电力系统稳定的定义与分类述评[J]. 电网技术, 2006, 30(17): 31-35.
SUN H D, TANG Y, MA S Y.A commentary on definition and classification of power system stability[J]. Power system technology, 2006, 30(17): 31-35.
[17] 张子扬, 张宁, 杜尔顺, 等. 双高电力系统频率安全问题评述及其应对措施[J]. 中国电机工程学报, 2022, 42(1): 1-25.
ZHANG Z Y, ZHANG N, DU E S, et al.Review and countermeasures on frequency security issues of power systems with high shares of renewables and power electronics[J]. Proceedings of the CSEE, 2022, 42(1): 1-25.
[18] 颜湘武, 崔森, 常文斐. 考虑储能自适应调节的双馈感应发电机一次调频控制策略[J]. 电工技术学报, 2021, 36(5): 1027-1039.
YAN X W, CUI S, CHANG W F.Primary frequency regulation control strategy of doubly-fed induction generator considering supercapacitor SOC feedback adaptive adjustment[J]. Transactions of China Electrotechnical Society, 2021, 36(5): 1027-1039.
[19] 张武其, 文云峰, 迟方德, 等. 电力系统惯量评估研究框架与展望[J]. 中国电机工程学报, 2021, 41(20): 6842-6856.
ZHANG W Q, WEN Y F, CHI F D, et al.Research framework and prospect on power system inertia estimation[J]. Proceedings of the CSEE, 2021, 41(20): 6842-6856.
[20] 邹培根, 孟建辉, 王毅, 等. 灵活虚拟同步机主要控制参数对系统频率稳定性的影响分析[J]. 高电压技术, 2018, 44(4): 1335-1342.
ZOU P G, MENG J H, WANG Y, et al.Influence analysis of the main control parameters in FVSG on the frequency stability of the system[J]. High voltage engineering, 2018, 44(4): 1335-1342.
[21] 罗启珩, 王晓茹, 刘金强, 等. 基于调速系统等值模型的电力系统发生扰动后最低频率预测[J]. 电力自动化设备, 2019, 39(10): 163-167.
LUO Q H, WANG X R, LIU J Q, et al.Minimum frequency prediction of power system after disturbance based on equivalent model of governor system[J]. Electric power automation equipment, 2019, 39(10): 163-167.
[22] CHAVEZ H, BALDICK R, SHARMA S.Governor rate-constrained OPF for primary frequency control adequacy[J]. IEEE transactions on power systems, 2014, 29(3): 1473-1480.
[23] 荣俊杰, 周明, 李庚银. 考虑动态频率安全的风电参与负荷恢复优化调度[J]. 电网技术, 2022, 46(4): 1335-1346.
RONG J J, ZHOU M, LI G Y.Optimal dispatch of wind power participating in load restoration considering dynamic frequency security[J]. Power system technology, 2022, 46(4): 1335-1346.

基金

国家自然科学基金(52107088); 江苏省自然科学基金(BK20210365)

PDF(1674 KB)

Accesses

Citation

Detail

段落导航
相关文章

/