高压SiC MOSFET更快的电压变化率dv/dt,导致其驱动遭受更严重的共模干扰,而现有高隔离电压驱动电源大多又存在耦合电容高、共模瞬态抗扰度(CMTI)能力弱、转换效率低等问题,因此该文设计一种兼具高隔离电压、高转换效率的低耦合电容驱动隔离电源。首先,基于有源钳位反激变换器,提出一种驱动隔离电源耦合电容等效简化解析模型,并通过仿真、实验验证解析模型可行性;其次,基于该模型分析耦合电容影响因素及其优化方法,为低耦合电容的驱动电源设计提供参考;最后,通过实验评估所提低耦合电容高压SiC MOSFET驱动隔离电源性能。结果表明,该文驱动隔离电源额定转换效率约80%,工频耐压高达18 kV,且耦合电容不足2 pF,CMTI能力强。
Abstract
Due to the faster dv/dt of high-voltage SiC MOSFET, the common mode interference of its gate driver is more serious. While most existing gate driver power supplies with high isolation voltage usually have the problems of high coupling capacitance, weak common mode transient immunity (CMTI) ability, low conversion efficiency and so on. Therefore, an isolated gate driver power supply with high isolation voltage, high conversion efficiency and low coupling capacitance is designed. Firstly, based on an active clamp flyback converter, this paper proposes a simplified analytical model for coupling capacitance, and the feasibility of analytical model is verified by simulations and experiments. Secondly, the influencing factors and optimization methods of coupling capacitance are analyzed, which provides references for the designs of low coupling capacitance gate driver power supplies. Finally, the performance of proposed high-voltage SiC MOSFET isolated gate driver power supply with low coupling capacitance is evaluated through experiments. The results show that its rated conversion efficiency is about 80%, and power frequency withstand voltage is up to 18 kV. In addition, the coupling capacitance of isolated gate driver power supply is less than 2 pF, so its CMTI capability is extremely strong.
关键词
碳化硅 /
MOSFET /
解析模型 /
驱动电源 /
耦合电容
Key words
silicon carbide /
MOSFET /
analytical models /
gate driver power supply /
coupling capacitor
{{custom_sec.title}}
{{custom_sec.title}}
{{custom_sec.content}}
参考文献
[1] MOTTO E R, REICHARD J.A practical application of commercial 3.3 kV, 750 A SiC modules[C]//2022 IEEE Applied Power Electronics Conference and Exposition (APEC). Houston, TX, USA, 2022: 1715-1719.
[2] RUJAS A, LOPEZ-MARTIN V M, JAUREGI A, et al. Railway inverter for metro application with 3.3 kV Full-SiC MOSFET modules[C]//2021 IEEE Vehicle Power and Propulsion Conference (VPPC). Gijon, Spain, 2021: 1-6.
[3] 曾正, 邵伟华, 胡博容, 等. SiC器件在光伏逆变器中的应用与挑战[J]. 中国电机工程学报, 2017, 37(1): 221-232.
ZENG Z, SHAO W H, HU B R, et al.Chances and challenges of photovoltaic inverters with silicon carbide devices[J]. Proceedings of the CSEE, 2017, 37(1): 221-232.
[4] 廖兴林, 李辉, 黄樟坚, 等. 温度对SiC MOSFET电流和电压变化率影响分析[J]. 太阳能学报, 2019, 40(8): 2368-2375.
LIAO X L, LI H, HUANG Z J, et al.Analysis of effect of temperature on did/dt and dvds/dt of SiC MOSFET[J]. Acta energiae solaris sinica, 2019, 40(8): 2368-2375.
[5] 李先允, 卢乙, 倪喜军, 等. 改善SiC MOSFET开关性能的变电压有源驱动电路研究[J]. 太阳能学报, 2022, 43(1): 362-368.
LI X Y, LU Y, NI X J, et al.Research on variable-voltage active drive circuit for improving SiC MOSFET switching performance[J]. Acta energiae solaris sinica, 2022, 43(1): 362-368.
[6] JI S Q, ZHENG S, WANG F, et al.Temperature-dependent characterization, modeling, and switching speed-limitation analysis of third-generation 10-kV SiC MOSFET[J]. IEEE transactions on power electronics, 2018, 33(5): 4317-4327.
[7] ZHANG X, LI H, BROTHERS J A, et al.A gate drive with power over fiber-based isolated power supply and comprehensive protection functions for 15-kV SiC MOSFET[J]. IEEE journal of emerging and selected topics in power electronics, 2016, 4(3): 946-955.
[8] MARXGUT C, BIELA J, KOLAR J W, et al.DC-DC converter for gate power supplies with an optimal air transformer[C]//2010 Twenty-Fifth Annual IEEE Applied Power Electronics Conference and Exposition (APEC). Palm Springs, CA, USA, 2010: 1865-1870.
[9] NGUYEN V T, PAWASKAR V U, GOHIL G.Isolated gate driver for medium-voltage SiC power devices using high-frequency wireless power transfer for a small coupling capacitance[J]. IEEE transactions on industrial electronics, 2021, 68(11): 10992-11001.
[10] HU J W, WANG J, BURGOS R, et al.High-density current-transformer-based gate-drive power supply with reinforced isolation for 10-kV SiC MOSFET modules[J]. IEEE journal of emerging and selected topics in power electronics, 2020, 8(3): 2217-2226.
[11] SEN S, ZHANG L Q, FENG X Y, et al.High isolation auxiliary power supply for medium-voltage power electronics building block[C]//2020 IEEE Applied Power Electronics Conference and Exposition (APEC). New Orleans, LA, USA, 2020: 2249-2253.
[12] 苏斌, 吕征宇. 新型电流型固态短路限流器驱动电源[J]. 中国电机工程学报, 2009, 29(27): 48-53.
SU B, LYU Z Y.Novel current-fed drive power supply for solid-state current limiter[J]. Proceedings of the CSEE, 2009, 29(27): 48-53.
[13] 方春恩, 薛涛, 付旭辉, 等. 固态开关的多路输出高压隔离供能电源研究[J]. 电机与控制学报, 2021, 25(6): 128-136.
FANG C E, XUE T, FU X H, et al.Research on multi-outputs high-voltage isolated power supply for solid state switches[J]. Electric machines and control, 2021, 25(6): 128-136.
[14] The datasheet of Power Integrations gate driver 1SC0450E2A0[EB/OL]. https://www.powerint.cn/sites/default/files/documents/1SC0450E2A0-xx.pdf.
[15] The datasheet of Power Integrations gate driver 2SC0635T2A1[EB/OL]. https://www.powerint.cn/sites/default/files/documents/2SC0635T2Ax-45.pdf.
[16] MAINALI K, MADHUSOODHANAN S, TRIPATHI A, et al.Design and evaluation of isolated gate driver power supply for medium voltage converter applications[C]//2016 IEEE Applied Power Electronics Conference and Exposition (APEC). Long Beach, CA, USA, 2016: 1632-1639.
[17] 牛雨萱. GaN有源箝位反激式电源控制策略研究[D]. 杭州: 浙江大学, 2020.
NIU Y X.Research on control strategy of GaN active-clamp flyback converter[D]. Huangzhou: Zhejiang University, 2020.
[18] SOLTAU N, WIESNER E, TSUDA R, et al.Impact of gate control on the switching performance of a 750A/3300V dual SiC-module[C]//2018 20th European Conference on Power Electronics and Applications (EPE'18 ECCE Europe). Riga, Latvia, 2018: 1-7.
[19] WATSON R, LEE F C, HUA G C.Utilization of an active-clamp circuit to achieve soft switching in flyback converters[C]//Proceedings of 1994 Power Electronics Specialist Conference-PESC'94. Taipei, China, 1994: 909-916.
[20] Txxa01txxx-2 rubadue wire[EB/OL]. http://www.vision-hk.com/Item/1347.aspx.
[21] 李勇, 李玉和, 李庆祥, 等. 计及边缘效应的非平行梳状驱动器的静电力计算[J]. 清华大学学报(自然科学版), 2003, 43(8): 1024-1026, 1030.
LI Y, LI Y H, LI Q X, et al.Computation of electrostatic forces with edge effects for non-parallel comb-actuators[J]. Journal of Tsinghua University (natural science), 2003, 43(8): 1024-1026, 1030.
[22] 李彦君, 张兴, 赵文广, 等. 基于拓展移相调制的双有源桥回流功率优化策略[J]. 太阳能学报, 2022, 43(3): 216-222.
LI Y J, ZHANG X, ZHAO W G, et al.Optimized strategy of dual active bridge reflux power based on extended phase shift modulation[J]. Acta energiae solaris sinica, 2022, 43(3): 216-222.
[23] 任皓妍, 马磊, 彭林, 等. 双有源桥DC-DC变换器H∞混合灵敏度控制及优化[J]. 太阳能学报, 2022, 43(11): 443-450.
REN H Y, MA L, PENG L, et al.H∞mixed sensitivity control and optimization of dual active bridge dc-dc converter[J]. Acta energiae solaris sinica, 2022, 43(11): 443-450.
基金
南瑞集团有限公司科技项目(JS2101854)