WIND-FIRE-ESS COORDINATED OPTIMIZATION SCHEDULING METHOD CONSIDERING COST OF ENERGY STORAGE CYCLE MILEAGE
Yang Xiuyu1, Yang Cheng1, Peng Jian2, Liao Gang2, Yuan Shaowei2, Zhu Zhengyin2
Author information+
1. Key Laboratory of Modern Power System Simulation and Control & Renewable Energy Technology (Northeast Electric Power University), Jilin 132012, China; 2. Urumqi Power Supply Company of State Grid Xinjiang Electric Power Co., Urumqi 830011, China
This paper proposes a wind-fire-storage coordinated optimal scheduling method considering the cycle mileage cost of energy storage by combining the full-life equivalent full-cycle model of energy storage. Firstly, in conjnnction with the calculation model of the full cycle number of the entire life, the life loss evaluation model of the energy storage device in the cycle mileage of different charge and discharge depths is further enhanced. Then, on the basis of accurately calculating the cost of energy storage cycle mileage, we constructed a wind-fire-storage coordinated optimization scheduling model considering factors such as energy storage operating cost, thermal power unit operating cost, and wind curtailment loss is constructed. Finally, the correctness and effectiveness of the proposed method are verified through example analysis, and compared with the traditional scheduling method of settling the operating cost of energy storage by kWh, this approach effectively avoided the negative impact of discharging under low charge on energy storage life, thereby ensuring the service life of energy storage system.
Yang Xiuyu, Yang Cheng, Peng Jian, Liao Gang, Yuan Shaowei, Zhu Zhengyin.
WIND-FIRE-ESS COORDINATED OPTIMIZATION SCHEDULING METHOD CONSIDERING COST OF ENERGY STORAGE CYCLE MILEAGE[J]. Acta Energiae Solaris Sinica. 2024, 45(9): 122-130 https://doi.org/10.19912/j.0254-0096.tynxb.2023-0692
中图分类号:
TM732
{{custom_sec.title}}
{{custom_sec.title}}
{{custom_sec.content}}
参考文献
[1] 鲁宗相, 李海波, 乔颖. 高比例可再生能源并网的电力系统灵活性评价与平衡机理[J]. 中国电机工程学报, 2017, 37(1): 9-20. LU Z X, LI H B, QIAO Y.Flexibility evaluation and supply/demand balance principle of power system with high-penetration renewable electricity[J]. Proceedings of the CSEE, 2017, 37(1): 9-20. [2] 柴国峰, 杨修宇, 徐唐海, 等. 基于双层场景约简的电力系统灵活性规划方法[J]. 东北电力大学学报, 2020, 40(6): 11-20. CHAI G F, YANG X Y, XU T H, et al.Flexibility planning method for electric power system based on Bi-level scene reduction[J]. Journal of Northeast Electric Power University, 2020, 40(6): 11-20. [3] 段士伟, 杨修宇, 柴仁勇, 等. 大规模风电接入的灵活性资源优化配置方法[J]. 东北电力大学学报, 2020, 40(6): 45-51. DUAN S W, YANG X Y, CHAI R Y, et al.Optimal configuration method of flexibility resources of high-penetration renewable energy[J]. Journal of northeast electric power university, 2020, 40(6): 45-51. [4] 吴智泉, 贾纯超, 陈磊, 等. 新型电力系统中储能创新方向研究[J]. 太阳能学报, 2021, 42(10): 444-451. WU Z Q, JIA C C, CHEN L, et al.Research on innovative direction of energy storage in new power system construction[J]. Acta energiae solaris sinica, 2021, 42(10): 444-451. [5] 李军徽, 张嘉辉, 穆钢, 等. 计及负荷峰谷特性的储能调峰日前优化调度策略[J]. 电力自动化设备, 2020, 40(7): 128-133, 140. LI J H, ZHANG J H, MU G, et al.Day-ahead optimal scheduling strategy of peak regulation for energy storage considering peak and valley characteristics of load[J]. Electric power automation equipment, 2020, 40(7): 128-133, 140. [6] 陈满, 陆志刚, 刘怡, 等. 电池储能系统恒功率削峰填谷优化策略研究[J]. 电网技术, 2012, 36(9): 232-237. CHEN M, LU Z G, LIU Y, et al.Research on optimal peak load shifting strategy of battery energy storage system operated in constant power mode[J]. Power system technology, 2012, 36(9): 232-237. [7] REHMAN A U, WADUD Z, ELAVARASAN R M, et al.An optimal power usage scheduling in smart grid integrated with renewable energy sources for energy management[J]. IEEE access, 2021, 9: 84619-84638. [8] CUI H T, LI F X, FANG X, et al.Bilevel arbitrage potential evaluation for grid-scale energy storage considering wind power and LMP smoothing effect[J]. IEEE transactions on sustainable energy, 2018, 9(2): 707-718. [9] 孙舟, 田贺平, 王伟贤, 等. 梯次利用电池储能系统参与用户侧削峰填谷的经济性研究[J]. 太阳能学报, 2021, 42(4): 95-100. SUN Z, TIAN H P, WANG W X, et al.Research on economy of echelon utilization battery energy storage system for user-side peak load shifting[J]. Acta energiae solaris sinica, 2021, 42(4): 95-100. [10] 王育飞, 郑云平, 薛花, 等. 基于增强烟花算法的移动式储能削峰填谷优化调度[J]. 电力系统自动化, 2021, 45(5): 48-56. WANG Y F, ZHENG Y P, XUE H, et al.Optimal dispatch of mobile energy storage for peak load shifting based on enhanced firework algorithm[J]. Automation of electric power systems, 2021, 45(5): 48-56. [11] SHI Y H, DONG S F, GUO C X, et al.Enhancing the flexibility of storage integrated power system by multi-stage robust dispatch[J]. IEEE transactions on power systems, 2021, 36(3): 2314-2322. [12] 赵书强, 王扬, 徐岩, 等. 基于机会约束目标规划的高风电接入比例下大规模储能与火电协调调度[J]. 中国电机工程学报, 2016, 36(4): 969-977. ZHAO S Q, WANG Y, XU Y, et al.Coordinated dispatch of large scale energy storage system and thermal generation in high wind power penetration level system based on chance constrained goal programming[J]. Proceedings of the CSEE, 2016, 36(4): 969-977. [13] FAN F L, KOCKAR I, XU H, et al.Scheduling framework using dynamic optimal power flow for battery energy storage systems[J]. CSEE journal of power and energy systems, 2022, 8(1): 271-280. [14] 徐若晨, 张江涛, 刘明义, 等. 电化学储能及抽水蓄能全生命周期度电成本分析[J]. 电工电能新技术, 2021, 40(12): 10-18. XU R C, ZHANG J T, LIU M Y, et al.Analysis of life cycle cost of electrochemical energy storage and pumped storage[J]. Advanced technology of electrical engineering and energy, 2021, 40(12): 10-18. [15] 文军, 刘楠, 裴杰, 等. 储能技术全生命周期度电成本分析[J]. 热力发电, 2021, 50(8): 24-29. WEN J, LIU N, PEI J, et al.Life cycle cost analysis for energy storage technology[J]. Thermal power generation, 2021, 50(8): 24-29. [16] 孙振新, 刘汉强, 赵喆, 等. 储能经济性研究[J]. 中国电机工程学报, 2013, 33(S1): 54-58. SUN Z X, LIU H Q, ZHAO Z, et al.Research on economical efficiency of energy storage[J]. Proceedings of the CSEE, 2013, 33(S1): 54-58. [17] 刘阳, 滕卫军, 谷青发, 等. 规模化多元电化学储能度电成本及其经济性分析[J]. 储能科学与技术, 2023, 12(1): 312-318. LIU Y, TENG W J, GU Q F, et al.Scaled-up diversified electrochemical energy storage LCOE and its economic analysis[J]. Energy storage science and technology, 2023, 12(1): 312-318. [18] OMAR N, ABDEL MONEM M, FIROUZ Y, et al.Lithium iron phosphate based battery—assessment of the aging parameters and development of cycle life model[J]. Applied energy, 2014, 113: 1575-1585. [19] 王荔妍, 陈启鑫, 何冠楠, 等. 考虑电池储能寿命模型的发电计划优化[J]. 电力系统自动化, 2019, 43(8): 93-100. WANG L Y, CHEN Q X, HE G N, et al.Optimization of generation scheduling considering battery energy storage life model[J]. Automation of electric power systems, 2019, 43(8): 93-100. [20] KINTNER-MEYER M C W, BALDUCCI P J, JIN C, et al. Energy storage for power systems applications: a regional assessment for the northwest power pool (NWPP)[R]. Pacific Northwest National Lab(PNNL), Richland, WA(United States), 2010.