台风风速下风力机风轮流固耦合动力响应特性研究

张锐星, 安利强, 何仑, 张颖

太阳能学报 ›› 2024, Vol. 45 ›› Issue (9) : 465-474.

PDF(3811 KB)
欢迎访问《太阳能学报》官方网站,今天是
PDF(3811 KB)
太阳能学报 ›› 2024, Vol. 45 ›› Issue (9) : 465-474. DOI: 10.19912/j.0254-0096.tynxb.2023-0694

台风风速下风力机风轮流固耦合动力响应特性研究

  • 张锐星1,2, 安利强1,2, 何仑1,2, 张颖3
作者信息 +

STUDY ON DYNAMIC RESPONSE CHARACTERISTICS OF WIND TURBINE ROTOR FLUID-STRUCTURE INTERACTION UNDER TYPHOON WIND SPEED

  • Zhang Ruixing1,2, An Liqiang1,2, He Lun1,2, Zhang Ying3
Author information +
文章历史 +

摘要

将改进的流固耦合方法用于不同风速下风力机的载荷和响应特性研究,其准确性得到NREL数据和风力机叶片模态振动实验的验证。与传统的流固耦合方法相比,该方法减少了动网格使用数量、避免负体积网格,提高了计算稳定性,将计算时间缩短约50%。仿真结果表明,将风速由25 m/s提升至35 m/s,叶片的推力和扭矩载荷的波动振幅分别增加了6.8倍和9.8倍。同时,在叶片吸力面发现存在结构屈曲,这与台风现场叶片断裂位置接近,可能是风力机叶片结构在台风环境下的强度薄弱点,同时,在叶片吸力面发现存在结构屈曲,这与台风现场叶片断裂位置接近,是可能的风力机叶片结构在台风环境下的强度薄弱点。

Abstract

High-precision fluid-structure interaction simulation is an effective method for studying the structural reliability of wind turbines under typhoon conditions. However, the substantial computational costs and issues related to negative volume grids significantly affect the efficiency and stability of simulation. In this study, an improved fluid-structure interaction method was applied to investigate the load and response characteristics of wind turbines at different wind spe eds. Its accuracy was validated using NREL data and wind turbine blade modal vibration experiments. Compared to traditional fluid-structure coupling methods, this approach reduces the number of dynamic grids used, avoids negative volume grids, enhances computational stability, and shortens computation time by approximately 50%. Simulation results indicate that increasing the wind speed from 25 m/s to 35 m/s leads to a 6.8-fold increase in fluctuation amplitude for blade thrust and a 9.8-fold increase for torque loads. Additionally, structural buckling was observed on the suction side of the blade, which is close to the location of blade fractures observed in actual typhoon conditions. This may indicate a structural weak point of wind turbine blades under typhoon environments, offering valuable insights for subsequent wind turbine design optimization.

关键词

风力机叶片 / 台风环境 / 振动环境 / 流固耦合 / 数值模拟 / 叶片强度

Key words

wind turbine blades / typhoon environment / vibration analysis fluid structure interaction / numerical models / blade strength

引用本文

导出引用
张锐星, 安利强, 何仑, 张颖. 台风风速下风力机风轮流固耦合动力响应特性研究[J]. 太阳能学报. 2024, 45(9): 465-474 https://doi.org/10.19912/j.0254-0096.tynxb.2023-0694
Zhang Ruixing, An Liqiang, He Lun, Zhang Ying. STUDY ON DYNAMIC RESPONSE CHARACTERISTICS OF WIND TURBINE ROTOR FLUID-STRUCTURE INTERACTION UNDER TYPHOON WIND SPEED[J]. Acta Energiae Solaris Sinica. 2024, 45(9): 465-474 https://doi.org/10.19912/j.0254-0096.tynxb.2023-0694
中图分类号: TM315   

参考文献

[1] CHEN X, XU J Z.Structural failure analysis of wind turbines impacted by super typhoon Usagi[J]. Engineering failure analysis, 2016, 60: 391-404.
[2] CHOU J S, OU Y C, LIN K Y, et al.Structural failure simulation of onshore wind turbines impacted by strong winds[J]. Engineering structures, 2018, 162: 257-269.
[3] DAO C, KAZEMTABRIZI B, CRABTREE C.Wind turbine reliability data review and impacts on levelised cost of energy[J]. Wind energy, 2019, 22(12): 1848-1871.
[4] 安利强, 孙阳, 王鹏, 等. 考虑随机参数的风电机组台风载荷特征研究[J]. 太阳能学报, 2021, 42(4): 417-423.
AN L Q, SUN Y, WANG P, et al.Study on typhoon load characteristics of wind turbines considering random parameters[J]. Acta energiae solaris sinica, 2021, 42(4): 417-423.
[5] 柯世堂, 王硕, 赵永发, 等. 台风-浪-流耦合作用下海上10 MW级特大型风力机风荷载特性分析[J]. 振动工程学报, 2023, 36(2): 299-310.
KE S T, WANG S, ZHAO Y F, et al.Wind load characteristics of 10 MW-level super-large offshore wind turbine under the coupling effect of typhoon-wave-current[J]. Journal of vibration engineering, 2023, 36(2): 299-310.
[6] 王立忠, 洪义, 高洋洋, 等. 近海风电结构台风环境动力灾变与控制[J]. 力学学报, 2023, 55(3): 567-587.
WANG L Z, HONG Y, GAO Y Y, et al.Dynamic catastrophe and control of offshore wind power structures in typhoon environment1)[J]. Chinese journal of theoretical and applied mechanics, 2023, 55(3): 567-587.
[7] ROSEMEIER M, BERRING P, BRANNER K.Non-linear ultimate strength and stability limit state analysis of a wind turbine blade[J]. Wind energy, 2016, 19(5): 825-846.
[8] NELSON B, LIN T Y, QUÉMÉNER Y, et al. Extreme typhoon loads effect on the structural response of an offshore wind turbine[C]//Proceedings of 7th PAAMES and AMEC2016, Hong Kong, China, 2016, 13: 14.
[9] HAN T, MCCANN G, MÜCKE T A, et al. How can a wind turbine survive in tropical cyclone?[J]. Renewable energy, 2014, 70: 3-10.
[10] ZHANG R X, HE L, AN L Q.A dynamic probabilistic analysis method for wind turbine rotor based on the surrogate model[J]. Journal of renewable and sustainable energy, 2023, 15(1): 013304.
[11] XU M, WEI M J, YANG T, et al.An embedded boundary approach for the simulation of a flexible flapping wing at different density ratio[J]. European journal of mechanics - B, 2016, 55: 146-156.
[12] CARRIÓN M, STEIJL R, WOODGATE M, et al. Aeroelastic analysis of wind turbines using a tightly coupled CFD-CSD method[J]. Journal of fluids and structures, 2014, 50: 392-415.
[13] MIAO W P, LI C, WANG Y B, et al.Study of adaptive blades in extreme environment using fluid-structure interaction method[J]. Journal of fluids and structures, 2019, 91: 102734.
[14] 王蕤, 仲继泽, 徐自力, 等. 动网格区域对叶片颤振流固耦合计算效率及精度的影响[J]. 推进技术, 2017, 38(9): 2086-2092.
WANG R, ZHONG J Z, XU Z L, et al.Effects of coverage of dynamic mesh region on efficiency and accuracy of coupled fluid structure simulation for blade flutter[J]. Journal of propulsion technology, 2017, 38(9): 2086-2092.
[15] BAO M L, DING Y, SANG M S, et al.Modeling and evaluating nodal resilience of multi-energy systems under windstorms[J]. Applied energy, 2020, 270: 115136.
[16] JONKMAN J, BUTTERFIELD S, MUSIAL W, et al.Definition of a 5-MW reference wind turbine for offshore system development[R]. National Renewable Energy Lab(NREL), Golden, CO(United States), 2009.
[17] 刘乐璠, 郑直, 闵为, 等. 基于动态重叠网格的阀芯振荡空化的研究[J]. 液压与气动, 2023, 47(5): 34-41.
LIU L F, ZHENG Z, MIN W, et al.Research on cavitation of valve core oscillation based on dynamic overset mesh[J]. Chinese hydraulics & pneumatics, 2023, 47(5): 34-41.
[18] RIYADH A A, ZISHAN A M, KHALIFA O F.Performance enhancement of a small-scale wind turbine featuring morphed trailing edge[J]. Sustainable energy technologies and assessments, 2021, 46: 101229.
[19] 胡超, 周丙浩, 马勇, 等. 基于FAST和Simulink的海上风力机叶片扭角和弦长优化设计研究[J]. 太阳能学报, 2021, 42(3): 135-141.
HU C, ZHOU B H, MA Y, et al.Optimization research of twist angle and chord length of offshore wind turbine blade based on fast and simulink[J]. Acta energiae solaris sinica, 2021, 42(3): 135-141.
[20] TANG D, BAO S Y, LUO L J, et al.A CFD/CSD coupled method with high order and its applications in flow induced vibrations of tube arrays in cross flow[J]. Annals of nuclear energy, 2019, 130: 347-356.

基金

国家自然科学基金(51675179); 河北省研究生创新资助项目(CXZZBS2023152)

PDF(3811 KB)

Accesses

Citation

Detail

段落导航
相关文章

/