针对有机朗肯循环(ORC)中传热过程对循环性能的影响,该文提出一种既相似但又区别于混合工质,各工质独立运行的叠合式有机朗肯循环(AORC)。AORC中,各工质进行串/并联的叠合换热,可形成类似于非共沸混合工质的温度滑移。由于各工质独立运行,使得叠合工质的温度滑移量可进行调节,以减小与外界热/冷源的传热温差,提高传热匹配性以及循环性能。以两种工质叠合的AORC为例进行循环性能分析,并与常规ORC进行对比。结果表明,AORC并不是各工质基本ORC的简单线性叠加,而是一种优化叠加。相比常规ORC,AORC的净输出功率最大可提升34.48%。但当热源温度高于高温工质的热源转折温度时,AORC趋近于高温工质的基本ORC。
Abstract
On account of the influence of the heat transfer processes on cycle performance in organic Rankine cycle (ORC), an addition organic Rankine cycle (AORC) is proposed in this paper, which is similar to but different from the ORC with non-azeotropic mixtures, and can operate independently for each working fluid. In AORC, the stacking heat transfer processes with series or parallel by the working fluids can form effect of temperature glide similar to the non-azeotropic mixtures. Due to the independent operation of each working fluid, the temperature glide can be adjusted to reduce the heat transfer temperature difference with external heat/cold sources, thus improve the heat transfer matching, and improve the performance of the AORC. The thermodynamic performance of AORC consisted of two working fluids as example is analyzed and compared with the conventional ORC. Results shown that AORC is not a simple linear superposition of basic ORCs of various working fluids, but a optimal superposition. Compared with the conventional ORC, a maximum increase of the net output power of AORC can be reached 34.48%. But when the heat source temperature is higher than the shift-temperature of the high-temperature cycle of the working fluid, the AORC will tend to approach the basic ORC of the same working fluid.
关键词
有机朗肯循环 /
非共沸混合工质 /
传热匹配 /
叠合循环 /
工质热源转折温度
Key words
organic Rankine cycle /
non-azeotropic mixtures /
heat transfer matching /
addition cycle /
shift-temperature of heating fluid for working fluid
{{custom_sec.title}}
{{custom_sec.title}}
{{custom_sec.content}}
参考文献
[1] 韩中合, 梅中恺, 李鹏. 中温有机朗肯循环多目标优化及工质筛选[J]. 太阳能学报, 2019, 40(10): 2739-2747.
HAN Z H, MEI Z K, LI P.Multi-objective optimization and working fluid selection for medium temperature organic Rankine cycle[J]. Acta energiae solaris sinica, 2019, 40(10): 2739-2747.
[2] ZHOU Y D, ZHANG F Y, YU L J.Performance analysis of the partial evaporating organic Rankine cycle (PEORC) using zeotropic mixtures[J]. Energy conversion and management, 2016, 129: 89-99.
[3] 卢金玲, 张洁, 郑亚, 等. 边界条件对非共沸混合工质有机朗肯循环的影响[J]. 工程热物理学报, 2018, 39(2): 256-261.
LU J L, ZHANG J, ZHENG Y, et al.Influence of different restrictive conditions on the thermodynamic performance of organic Rankine cycles using zeotropic mixtures[J]. Journal of engineering thermophysics, 2018, 39(2): 256-261.
[4] LI X G, ZHAO C C, HU X C.Thermodynamic analysis of organic Rankine cycle with ejector[J]. Energy, 2012, 42(1): 342-349.
[5] LI J, GE Z, DUAN Y Y, et al.Parametric optimization and thermodynamic performance comparison of single-pressure and dual-pressure evaporation organic Rankine cycles[J]. Applied energy, 2018, 217: 409-421.
[6] WANG M T, CHEN Y G, LIU Q Y, et al.Thermodynamic and thermo-economic analysis of dual-pressure and single pressure evaporation organic Rankine cycles[J]. Energy conversion and management, 2018, 177: 718-736.
[7] 刘雪玲, 牛锦涛, 汪健生, 等. 利用地热能的双压有机朗肯循环性能分析[J]. 太阳能学报, 2022, 43(9): 437-443.
LIU X L, NIU J T, WANG J S, et al.Thermodynamic performance analysis of double pressure organic Rankine cycle driven by geotherm[J]. Acta energiae solaris sinica, 2022, 43(9): 437-443.
[8] 陈超男, 罗向龙, 杨智, 等. 非共沸混合工质组分调控ORC系统热经济性分析和优化[J]. 化工学报, 2020, 71(5): 2373-2381.
CHEN C N, LUO X L, YANG Z, et al.Thermo-economic modelling and optimization of a zeotropic organic Rankine cycle with composition adjustment[J]. CIESC journal, 2020, 71(5): 2373-2381.
[9] ZHANG C H, LIN J Y, TAN Y F.A theoretical study on a novel combined organic Rankine cycle and ejector heat pump[J]. Energy, 2019, 176: 81-90.
[10] 李新国, 高冠怡, 吴晓松, 等. 结合闪蒸循环的有机朗肯循环以提升循环性能研究[J]. 太阳能学报, 2021, 42(12): 22-28.
LI X G, GAO G Y, WU X S, et al.Study of organic Rankine cycle combined with flash cycle to improved cycle performance[J]. Acta energiae solaris sinica, 2021, 42(12): 22-28.
[11] 胡硕倬, 李健, 葛众, 等. 跨临界-亚临界复叠式有机朗肯循环性能分析[J]. 热科学与技术, 2021, 20(1): 65-71.
HU S Z, LI J, GE Z, et al.Performance analysis on the transcritical-subcritical cascade organic Rankine cycle system[J]. Journal of thermal science and technology, 2021, 20(1): 65-71.
[12] LIU X Y, NGUYEN M Q, CHU J C, et al.A novel waste heat recovery system combing steam Rankine cycle and organic Rankine cycle for marine engine[J]. Journal of cleaner production, 2020, 265: 121502.
[13] 李新国, 苗小旦. 应用于有机朗肯循环的双工质管壳式蒸发器: CN114838526A[P].2022-08-02.
LI X G, MIAO X D. Shell-andv-tube evaporator with donble working fluids for organic Rankine cycle: CN114838526A[P].2022-08-02.
[14] 李新国, 王伟, 翟哲, 等. 有机朗肯循环中的工质热源转折温度及其特征[J]. 化工进展, 2017, 36(9): 3223-3230.
LI X G, WANG W, ZHAI Z, et al.Shift-temperature of heating fluid and its characteristics for working fluid in organic Rankine cycle[J]. Chemical industry and engineering progress, 2017, 36(9): 3223-3230.
基金
国家重点研发计划(2021YFE0108400)