光伏组件布置方式对光伏温室温光环境的影响研究

李安喆, 侯宏娟, 王锡, 张辉, 庞建伟

太阳能学报 ›› 2024, Vol. 45 ›› Issue (9) : 285-294.

PDF(1679 KB)
欢迎访问《太阳能学报》官方网站,今天是
PDF(1679 KB)
太阳能学报 ›› 2024, Vol. 45 ›› Issue (9) : 285-294. DOI: 10.19912/j.0254-0096.tynxb.2023-0703

光伏组件布置方式对光伏温室温光环境的影响研究

  • 李安喆1, 侯宏娟1, 王锡2, 张辉1, 庞建伟2
作者信息 +

RESEARCH ON EFFECT OF PHOTOVOLTAIC MODULE ARRANGEMENT ON TEMPERATURE AND LIGHT ENVIRONMENT OF PHOTOVOLTAIC GREENHOUSE

  • Li Anzhe1, Hou Hongjuan1, Wang Xi2, Zhang Hui1, Pang Jianwei2
Author information +
文章历史 +

摘要

在温室结构中引入光伏组件会对温室内部的光、热环境产生积极影响,为探究各季节屋顶光伏对温室内部环境的影响,获得最佳覆盖率,进而在改善光伏温室内光热环境的同时提高光伏发电量,建立温室内辐射得热模型并通过实验验证模型的准确性。结合所提出的光伏温室系统,对典型日下对某顶部面积为420 m2的光伏温室在不同光伏组件覆盖率下的室内辐照量、室内气温及光伏发电量进行模拟分析。结果表明,与不铺设光伏组件相比,光伏组件的覆盖率每增加12.5%,春分日、夏至日、秋分日、冬至日的室内辐照量分别降低2.79%、5.8%、2.90%、0.70%,白天室内气温分别降低1.19%、0.54%、0.49%、1.12%。通过对植物生长所需的光、温条件进行分析,得出各典型日的最佳光伏组件覆盖率分别为62.5%、50%、62.5%、25%。

Abstract

The introduction of PV modules in the greenhouse structure positively affects the light and heat environment of the greenhouse. In order to investigate the effect of rooftop photovoltaics on the internal environment of greenhouses in all seasons and to obtain the optimal coverage,improve the light and heat environment of the PV greenhouse while increasing the PV power generation,a radiative heat gain model in the greenhouse is developed in this paper, and the accuracy of the model is verified through experiments. Under different coverage rates of PV modules,the proposed PV greenhouse system is used to simulate the indoor irradiance, indoor air temperature and PV power generation for a greenhouse with a top area of 420 m2 on a typical day. The results show that for every 12.5% increase in PV module coverage compared to no PV modules, the indoor irradiation on the equinox, summer solstice, fall solstice, and winter solstice days was reduced by 2.79%, 5.8%, 2.90%, 0.70%, and daytime indoor air temperatures were reduced by 1.19%, 0.54%, 0.49%, and 1.12%, respectively.By analyzing the light and temperature conditions required of plant growth, the optimal PV module coverage rates for each typical day was 62.5%, 50%, 62.5%, and 25%, and the corresponding PV power generation was 222.80, 228.57, 224.00, and 36.05 kWh.

关键词

太阳能 / 光伏温室 / 辐射得热模型 / 覆盖率 / 光伏发电量 / 静态投资回收期

Key words

solar energy / photovoltaic greenhouse / radiant heat gain model / coverage / photovoltaic power generation / static payback period

引用本文

导出引用
李安喆, 侯宏娟, 王锡, 张辉, 庞建伟. 光伏组件布置方式对光伏温室温光环境的影响研究[J]. 太阳能学报. 2024, 45(9): 285-294 https://doi.org/10.19912/j.0254-0096.tynxb.2023-0703
Li Anzhe, Hou Hongjuan, Wang Xi, Zhang Hui, Pang Jianwei. RESEARCH ON EFFECT OF PHOTOVOLTAIC MODULE ARRANGEMENT ON TEMPERATURE AND LIGHT ENVIRONMENT OF PHOTOVOLTAIC GREENHOUSE[J]. Acta Energiae Solaris Sinica. 2024, 45(9): 285-294 https://doi.org/10.19912/j.0254-0096.tynxb.2023-0703
中图分类号: TK515   

参考文献

[1] 任建波, 李忠伟, 王一平, 等. 屋顶光伏与建筑负荷之间的相互影响[J]. 太阳能学报, 2008, 29(7): 849-855.
REN J B, LI Z W, WANG Y P,et al.Interaction between solar pv roofs and loads of the building[J]. Acta energiae solaris sinica, 2008, 29(7): 849-855.
[2] YANO A, FURUE A, KADOWAKI M, et al.Electrical energy generated by photovoltaic modules mounted inside the roof of a north-south oriented greenhouse[J]. Biosystems engineering, 2009, 103(2): 228-238.
[3] MARUCCI A, CAPPUCCINI A.Dynamic photovoltaic greenhouse: energy efficiency in clear sky conditions[J]. Applied energy, 2016, 170: 362-376.
[4] 何梓年. 太阳能热利用[M].中国科学技术大学出版社, 2009.
HE Z N.Solar thermal utilization[M]. Hefei: University of Science and Technology of China Press, 2009.
[5] 许红军, 曹晏飞, 李彦荣, 等. 日光温室太阳辐射模型构建及应用[J]. 农业工程学报, 2019, 35(7): 160-169.
XU H J, CAO Y F, LI Y R, et al.Establishment and application of solar radiation model in solar greenhouse[J]. Transactions of the Chinese Society of Agricultural Engineering, 2019, 35(7): 160-169.
[6] 韩亚东, 薛学武, 罗新兰等. 日光温室内太阳辐射估算模型的构建[J]. 农业工程学报, 2014, 30(10): 174-181.
HAN Y D, XUE X W, LUO X L, et al.Establishment of estimation model of solar radiation within solar greenhouse[J]. Transactions of the Chinese Society of Agricultural Engineering, 2014, 30(10): 174-181.
[7] 刘艳峰, 田师果, 周勇, 等. 附加阳光间型被动式太阳房传热量简化计算方法研究[J]. 太阳能学报, 2022, 43(4): 256-263.
LIU Y F, TIAN S G, ZHOU Y, et al.Study on simplified calculation method of heat transfer in passive house with attached sunspace[J]. Acta energiae solaris sinica, 2022, 43(4): 256-263.
[8] SETHI V P.On the selection of shape and orientation of a greenhouse: thermal modeling and experimental validation[J]. Solar energy, 2009, 83(1): 21-38.
[9] FATNASSI H, PONCET C, BAZZANO M M, et al.A numerical simulation of the photovoltaic greenhouse microclimate[J]. Solar energy, 2015, 120: 575-584.
[10] 张勇. 光伏温室组件覆盖率及遮光机理研究[J]. 农业工程技术, 2015, 35(31): 36-39.
ZHANG Y.Study on module coverage and shading mechanism of photovoltaic greenhouse[J]. Agriculture engineering technology, 2015, 35(31): 36-39.
[11] COSSU M, MURGIA L, LEDDA L, et al.Solar radiation distribution inside a greenhouse with south-oriented photovoltaic roofs and effects on crop productivity[J]. Applied energy, 2014, 133: 89-100.
[12] COSSU M, YANO A, LI Z, et al.Advances on the semi-transparent modules based on micro solar cells: first integration in a greenhouse system[J]. Applied energy, 2016, 162: 1042-1051.
[13] 李天宇, 孙耀杰, 吴佳露等. 光伏温室屋顶组件排布对太阳光利用率的影响[J]. 照明工程学报, 2022, 33(6): 195-202.
LI T Y, SUN Y J, WU J L, et al.The influence of the layont of photovoltaic greenhouse roof modules on solar energy utilization[J]. China illuminating engineering journal, 2022, 33(6): 195-202.
[14] 李小芳, 陈青云. 日光温室山墙对室内太阳直接辐射得热量的影响[J]. 农业工程学报, 2004, 20(5): 241-245.
LI X F, CHEN Q Y.Effect of gable wall on the heat gain from direct solar radiation in sunlight greenhouse[J]. Transactions of the Chinese Society of Agricultural Engineering, 2004, 20(5): 241-245.
[15] ZHANG G S, DING X M, LI T H, et al.Dynamic energy balance model of a glass greenhouse: an experimental validation and solar energy analysis[J]. Energy, 2020, 198: 117281.
[16] DUFFIE (Deceased) J A, BECKMAN W A, BLAIR N. Solar engineering of thermal processes, photovoltaics and wind[M]. John Wiley & Sons,Inc.:2020-03-30.
[17] LIU B Y H, JORDAN R C. The interrelationship and characteristic distribution of direct, diffuse and total solar radiation[J]. Solar energy, 1960, 4(3): 1-19.
[18] GODBEY L C, BOND T E, ZORNIG H F.Transmission of solar and long-wavelength energy by materials used as covers for solar collectors and greenhouses[J]. Transactions of the ASAE, 1979, 22(5): 1137-1144.
[19] TIWARI G N.Greenhouse technology for controlled environment[M]. Alpha Science Int'l Ltd., 2003.
[20] TIWARI G N, SHARMA P K, GOYAL R K, et al.Estimation of an efficiency factor for a greenhouse: a numerical and experimental study[J]. Energy and buildings, 1998, 28(3): 241-250.
[21] KAPLANI E, KAPLANIS S.Thermal modelling and experimental assessment of the dependence of PV module temperature on wind velocity and direction, module orientation and inclination[J]. Solar energy,2014,107: 443-460.
[22] ALBRIGHT L D, SEGINER I, MARSH L S, et al.In situ thermal calibration of unventilated greenhouses[J]. Journal of agricultural engineering research, 1985, 31(3): 265-281.
[23] 李小芳. 日光温室的热环境数学模拟及其结构优化[D].北京: 中国农业大学, 2005.
LI X F.Simulation of thermal environment and structural optimization for sunlight greenhouse[D]. Beijing: China Agricultural University, 2005.
[24] NASA:NASA Prediction of worldwide energy resources[EB/OL]. https://power.larc.nasa.gov.
[25] KITTAS C, KATSOULAS N, BARTZANAS T.Greenhouse climate control in mediterranean greenhouses[J]. Cuadernos de estudios agroalimentarios, 2012 (3): 89-114.
[26] 王婧. 分布式光伏储能系统经济性研究[D]. 北京: 华北电力大学, 2022.
WANG J.Research on economics of Distributed photovoltaic energy storage system[D]. Bejing: North China Electric Power University, 2022.

基金

国家重点研发计划(2021YFE0194500); 北京市自然科学基金(3222042)

PDF(1679 KB)

Accesses

Citation

Detail

段落导航
相关文章

/