基于需求响应的家庭负荷优化调度算法研究

张丽, 刘青雷, 艾恒涛, 张涛, 张宏伟

太阳能学报 ›› 2024, Vol. 45 ›› Issue (9) : 131-139.

PDF(1186 KB)
欢迎访问《太阳能学报》官方网站,今天是
PDF(1186 KB)
太阳能学报 ›› 2024, Vol. 45 ›› Issue (9) : 131-139. DOI: 10.19912/j.0254-0096.tynxb.2023-0705

基于需求响应的家庭负荷优化调度算法研究

  • 张丽1,2, 刘青雷1, 艾恒涛1, 张涛1,3, 张宏伟4
作者信息 +

RESEARCH ON OPTIMAL DISPATCH ALGORITHM OF HOUSEHOLD LOAD BASED ON DEMAND RESPONSE

  • Zhang Li1,2, Liu Qinglei1, Ai Hengtao1, Zhang Tao1,3, Zhang Hongwei4
Author information +
文章历史 +

摘要

为提升电力需求侧负荷需求响应能力,降低家庭用户的用电成本和电网日负荷曲线峰谷差,提出一种基于改进多目标粒子群算法的家庭负荷优化调度策略。首先,分析家庭负荷的运行特性并对其分类建模,采用功率平衡和储能充放电功率为约束,建立以用电成本和负荷峰值平均功率比为目标的负荷优化调度模型;其次,以自适应惯性权重和均值欧氏距离等策略对多目标粒子群算法进行改进,并用改进算法对建立的模型进行优化求解;最后,用实际算例进行仿真,验证所提模型和算法的可行性与有效性,为用户参与需求响应提供了多种参考方案。

Abstract

To enhance the load demand response capability of the electricity demand side, and to reduce the electricity cost for household users and the peak-to-valley difference of the daily load curve, in the paper, an optimized household load scheduling strategy based on improved multi-objective particle swarm optimization is proposed. Firstly, the running characteristics of household load are analyzed and its classification model is built. Then, with power balance and energy storage charging and discharging power as constraints, a load optimization scheduling model aiming at power consumption cost and load peak-to-peak ratio is established. Secondly, adaptive inertial weights and mean Euclidean distance strategies are used to improve the multi-objective PSO, and the model is optimized and solved. Finally, the feasibility and effectiveness of the model and algorithm is verified by a simulation example, which provides a variety of reference schemes for users to participate in demand response.

关键词

光伏 / 储能 / 粒子群算法 / 多目标优化 / 峰值平均功率比 / 帕累托前沿 / 需求响应

Key words

PV / energy storage / particle swarm optimization(PSO) / multi-objective optimization / peak to average power ratio(PAPR) / Pareto principle / demand response

引用本文

导出引用
张丽, 刘青雷, 艾恒涛, 张涛, 张宏伟. 基于需求响应的家庭负荷优化调度算法研究[J]. 太阳能学报. 2024, 45(9): 131-139 https://doi.org/10.19912/j.0254-0096.tynxb.2023-0705
Zhang Li, Liu Qinglei, Ai Hengtao, Zhang Tao, Zhang Hongwei. RESEARCH ON OPTIMAL DISPATCH ALGORITHM OF HOUSEHOLD LOAD BASED ON DEMAND RESPONSE[J]. Acta Energiae Solaris Sinica. 2024, 45(9): 131-139 https://doi.org/10.19912/j.0254-0096.tynxb.2023-0705
中图分类号: TM734   

参考文献

[1] 任鑫芳, 张志朝, 许李天伦, 等. 计及电动汽车与温控负荷需求响应的分层能源系统优化调度[J]. 电力建设, 2022, 43(9): 77-86.
REN X F, ZHANG Z C, XU L T L, et al. Optimal scheduling of hierarchical energy systems with electric vehicles and temperature-controlled load demand response[J]. Electric power construction, 2022, 43(9): 77-86.
[2] 杨晓萍, 张凡凡, 解骞, 等. 基于激励型需求响应的主动配电网态势利导方法[J]. 太阳能学报, 2022, 43(3): 133-140.
YANG X P, ZHANG F F, XIE Q, et al.Situation orientation method of active distribution network based on incentive demand response[J]. Acta energiae solaris sinica, 2022, 43(3): 133-140.
[3] 唐捷, 黄婧杰, 徐志强, 等. 应对停电的储能备用系数及家庭能量管理系统优化控制模型[J]. 电力系统及其自动化学报, 2022, 34(6): 54-60.
TANG J, HUANG J J, XU Z Q, et al.Coefficient of energy storage reserve for power failure and optimal control model for household energy management system[J]. Proceedings of the CSU-EPSA, 2022, 34(6): 54-60.
[4] 孙毅, 裴俊亦, 景栋盛. 考虑用户行为不确定性的智能家电控制策略[J]. 电力系统保护与控制, 2018, 46(17): 109-117.
SUN Y, PEI J Y, JING D S.Smart home appliance control strategy considering user behavior uncertainty[J]. Power system protection and control, 2018, 46(17): 109-117.
[5] 曾博, 蒋雯倩, 杨舟, 等. 基于机会约束规划的家庭用电设备负荷优化调度方法[J]. 电力自动化设备, 2018, 38(9): 27-33.
ZENG B, JIANG W Q, YANG Z, et al.Optimal load dispatching method based on chance-constrained programming for household electrical equipment[J]. Electric power automation equipment, 2018, 38(9): 27-33.
[6] 范德金, 张姝, 王杨, 等. 考虑用户调节行为多样性的空调负荷聚合商日前调度策略[J]. 电力系统保护与控制, 2022, 50(17): 133-142.
FAN D J, ZHANG S, WANG Y, et al.Day ahead scheduling strategy for air conditioning load aggregators considering user regulation behavior diversity[J]. Power system protection and control, 2022, 50(17): 133-142.
[7] 杨德玲, 林泽宏, 赖伟坚, 等. 虚拟电厂背景下的空调负荷控制策略[J]. 电力需求侧管理, 2020, 22(1): 48-51, 85.
YANG D L, LIN Z H, LAI W J, et al.Load control strategy under the background of virtual power generation[J]. Power demand side management, 2020, 22(1): 48-51, 85.
[8] 闫秀英, 党苗苗. 基于改进多目标粒子群算法的家庭用电时段优化[J]. 系统仿真学报, 2022, 34(1): 70-78.
YAN X Y, DANG M M.Optimization of household electricity consumption period based on improved multi-objective particle swarm optimization[J]. Journal of system simulation, 2022, 34(1): 70-78.
[9] 彭茜, 王爱娟, 李峻阳, 等. 基于高效遗传算法的电网需求侧调度优化研究及其收敛性分析[J]. 电力系统保护与控制, 2022, 50(6): 33-42.
PENG Q, WANG A J, LI J Y, et al.Optimization of the demand side dispatching of a power grid based on an efficient genetic algorithm and its convergence analysis[J]. Power system protection and control, 2022, 50(6): 33-42.
[10] 王玉彬, 董伟, 陈源奕, 等. 基于数据驱动的家庭能量实时经济调控方法[J]. 电力系统自动化, 2022, 46(13): 21-29.
WANG Y B, DONG W, CHEN Y Y, et al.Data-driven real-time economic regulation method for household energy[J]. Automation of electric power systems, 2022, 46(13): 21-29.
[11] 张丽, 高龙飞, 刘智彤, 等. 支持自动需求响应的用电管控终端和系统及负荷辨识方法: CN108964276B[P].2021-07-27.
ZHANG L, GAO L L,LIU Z T,et al. Electricity control terminals and systems that support automatic demand response and load identification methods: CN108964276B[P].2021-07-27.
[12] 张华一, 文福拴, 张璨, 等. 计及舒适度的家庭能源中心运行优化模型[J]. 电力系统自动化, 2016, 40(20): 32-39.
ZHANG H Y, WEN F S, ZHANG C, et al.Operation optimization model of home energy hubs considering comfort level of customers[J]. Automation of electric power systems, 2016, 40(20): 32-39.
[13] 程林, 齐宁, 田立亭. 考虑运行控制策略的广义储能资源与分布式电源联合规划[J]. 电力系统自动化, 2019, 43(10): 27-35, 43.
CHENG L, QI N, TIAN L T.Joint planning of generalized energy storage resource and distributed generator considering operation control strategy[J]. Automation of electric power systems, 2019, 43(10): 27-35, 43.
[14] 王盼宝, 徐殿国, 谭岭玲, 等. 基于改进MOPSO的多能互补型微电网多元优化运行策略[J]. 南方电网技术, 2022, 16(10): 130-140.
WANG P B, XU D G, TAN L L, et al.Multivariate optimal operation strategy of multi-energy complementary microgrid based on improved MOPSO[J]. Southern power system technology, 2022, 16(10): 130-140.
[15] 张静, 石鑫. 基于改进MOPSO-BP算法的短期电力负荷预测研究[J]. 电力学报, 2019, 34(6): 556-563.
ZHANG J, SHI X.Short-term power load forecasting based on improved MOPSO-BP algorithm[J]. Journal of electric power, 2019, 34(6): 556-563.
[16] 胡成玉, 余果, 颜雪松, 等. 基于改进多目标优化算法的分布式数据中心负载调度[J]. 控制与决策, 2021, 36(1): 159-165.
HU C Y, YU G, YAN X S, et al.Multi-objective optimization of energy and performance management in distributed data centers[J]. Control and decision, 2021, 36(1): 159-165.
[17] LI M Q, YAO X.Quality evaluation of solution sets in multiobjective optimisation: a survey[J]. ACM computing surveys, 2019, 52(2): 26.
[18] 陈万芬, 王宇嘉, 林炜星. 异构集成代理辅助多目标粒子群优化算法[J]. 计算机工程与应用, 2021, 57(23): 71-80.
CHEN W F, WANG Y J, LIN W X.Heterogeneous ensemble surrogate assisted multi-objective particle swarm optimization algorithm[J]. Computer engineering and applications, 2021, 57(23): 71-80.
[19] 苏福清. 基于改进粒子群的含风电配电网无功优化算法研究[D]. 株洲:湖南工业大学, 2022.
SU F Q.Research on reactive power optimization algorithm of wind power distribution network based on improved particle swarm optimization[D]. Zhuzhou: Hunan University of Technology, 2022.
[20] 张丽, 刘青雷, 张宏伟. 基于改进二进制粒子群算法的家庭负荷优化调度策略[J]. 中国电力, 2023,56(5):118-128.
ZHANG L, LIU Q L, ZHANG H W.Optimal household load dispatch strategy based on improved binary particle swarm optimization algorithm[J]. China electric power, 2023, 56(5): 118-128.
[21] 李菁, 王志新, 严胜, 等. 计及舒适度的家庭能量管理系统优化控制策略[J]. 太阳能学报, 2020, 41(10): 51-58.
LI J, WANG Z X, YAN S, et al.Optimal operation of home energy management system considering user comfort preference[J]. Acta energiae solaris sinica, 2020, 41(10): 51-58.
[22] 戚建文, 任建文, 翟俊义. 基于改进多目标引力搜索算法的电力系统环境经济调度[J]. 电测与仪表, 2016, 53(18): 80-86.
QI J W, REN J W, ZHAI J Y.Environmental economic dispatch based on improved multi-objective gravity search algorithm[J]. Electrical measurement & instrumentation, 2016, 53(18): 80-86.

基金

国家自然科学基金(U1804143); 河南省科技攻关项目(242102241027、242102210185); 河南省高等学校重点科研项目计划(24A470006)

PDF(1186 KB)

Accesses

Citation

Detail

段落导航
相关文章

/