综合运用预处理、变分模态分析、偏相干分析等手段,对一款燃料电池系统不同运行工况下进行噪声测试及综合分析。结合不同工况下燃料电池系统零部件的工作特性,识别不同工况下主要噪声源零件及其贡献。在低负载工况下,主要噪声源零件是氢气循环泵、水泵,其特征频率分别为200、1280 Hz,贡献量分别为0.42、0.77;在高负载工况下,主要噪声源零件是空压机,其特征频率为8920 Hz,贡献量为0.24。该文分析得到不同工况燃料电池系统的噪声特性,并提出适合非消声室测试噪声数据的分析方法。
Abstract
A signal processing approach combining pre-processing, variational mode analysis, and partial coherence analysis is employed to analyze acoustic noise measurement data in a fuel cell system under different operating conditions. Coupling with the analysis of components behaviors in the fuel cell system, the main noise sources, characteristic frequencies and their contributions are identified at each working condition. Under low-load power output condition, the dominant noise source is the hydrogen recirculation pump and water pump with characteristic frequencies of 200 and 1280 Hz, and contributions of 0.42 and 0.77, respectively. Under high-load power output condition, the main noise source switches to the air compressor with characteristic frequency of 8920 Hz and contribution of 0.24. The fuel cell system noise characteristics is obtained in this study under different working conditions. The analysis method proposed in this study can be used for evaluating noise characteristic of fuel cell systems tested in non-anechoic chamber.
关键词
燃料电池 /
声学噪声测试 /
变分模态分解 /
信号处理 /
偏相干分析
Key words
fuel cells /
acoustic noise measurement /
variational mode decomposition /
signal processing /
partial coherence analysis
{{custom_sec.title}}
{{custom_sec.title}}
{{custom_sec.content}}
参考文献
[1] 朱德祥, 余强. 纯电动汽车制动噪声分析[C]//自主创新、学术交流——第十届河南省汽车工程科学技术研讨会论文集. 郑州, 2013: 322-324.
ZHU D X, YU Q.Analysis of brake noise in pure electric vehicles[C]//Independent Innovation and Academic Exchange—Proceedings of the 10th Henan Province Automotive Engineering Science and Technology Symposium. Zhengzhou, 2013: 322-324.
[2] 舒歌群, 刘宁. 车辆及发动机噪声声音品质的研究与发展[J]. 汽车工程, 2002, 24(5): 403-407.
SHU G Q, LIU N.Advance in sound quality research for noise of vehicle and its engine[J]. Automotive engineering, 2002, 24(5): 403-407.
[3] 叶胜望, 梁焱财, 王霁宇, 等. 燃料电池汽车氢喷射噪声分析及优化[J]. 上海汽车, 2017, 11: 3-5.
YE S W, LIANG Y C, WANG J Y, et al.Analysis and optimization of hydrogen injection noise in fuel cell vehicles[J]. Shanghai auto, 2017, 11: 3-5.
[4] 左曙光, 范珈璐, 韦开君, 等. 燃料电池车用离心风机噪声特性试验分析[J]. 振动与冲击, 2014, 33(19): 181-186.
ZUO S G, FAN J L, WEI K J, et al.Tests for noise features of centrifugal blower in a fuel cell vehicle[J]. Journal of vibration and shock, 2014, 33(19): 181-186.
[5] 曹精明, 高文进, 张福亮, 等. 燃料电池公交车定置噪声分析及降噪[J]. 汽车科技, 2022(4): 69-74.
CAO J M, GAO W J, ZHANG F L, et al.Noise analysis and reduction of fuel cell bus in parking state[J]. Auto sci-tech, 2022(4): 69-74.
[6] 吴旭东, 左曙光, 芦勇. 偏相干分析在燃料电池轿车噪声源识别中的应用[J]. 噪声与振动控制, 2008, 28(3): 81-84.
WU X D, ZUO S G, LU Y.Identifying noise source based on application to partial coherence analysis in fuel cell car[J]. Noise and vibration control, 2008, 28(3): 81-84.
[7] 洪浩源, 雷刚, 王振. 不同工况下的燃料电池模块噪声分析[J]. 船电技术, 2022, 42(10): 114-117.
HONG H Y, LEI G, WANG Z.Noise analysis of fuel cell module under different working conditions[J]. Marine electric & electronic engineering, 2022, 42(10): 114-117.
[8] 许向国, 付娜. 燃料电池系统噪声测试方法研究[J]. 中国测试, 2022, 48(9): 17-21.
XU X G, FU N.Study on noise measurement method of fuel cell system[J]. China measurement & test, 2022, 48(9): 17-21.
[9] 夏云飞, 程子敬, 李稚. 基于小波软阈值去噪和EMD的车辆声信号频谱分析[J]. 电子设计工程, 2021, 29(20): 24-29, 35.
XIA Y F, CHENG Z J, LI Z.Frequency spectrum analysis of vehicles acoustic signals based on wavelet soft threshold denoising and EMD[J]. Electronic design engineering, 2021, 29(20): 24-29, 35.
[10] YAO J C, XIANG Y, QIAN S C, et al.Noise source identification of diesel engine based on variational mode decomposition and robust independent component analysis[J]. Applied acoustics, 2017, 116: 184-194.
[11] DRAGOMIRETSKIY K, ZOSSO D.Variational mode decomposition[J]. IEEE transactions on signal processing, 2014, 62(3): 531-544.
[12] 赵海澜, 汪鸿振. 偏相干分析识别噪声源的计算[J]. 噪声与振动控制, 2005, 25(5): 31-33.
ZHAO H L, WANG H Z.Calculation of identifying noise source based on partial coherence analysis[J]. Noise and vibration control, 2005, 25(5): 31-33.
[13] 刘阳, 陈奔. 车用PEMFC氢气系统建模及其排放特性研究[J]. 太阳能学报, 2023, 44(2): 260-268.
LIU Y, CHEN B.Modeling and emission characteristics study of pemfc hydrogen system for vehicles[J]. Acta energiae solaris sinica, 2023, 44(2): 260-268.
[14] 赵金国, 郭恒. 氢燃料电池氢气利用率提升策略研究[J]. 太阳能学报, 2022, 43(8): 510-516.
ZHAO J G, GUO H.Research on hydrogen utilization rate enhancement strategy of hydrogen fuel cell[J]. Acta energiae solaris sinica, 2022, 43(8): 510-516.
[15] GOVINDSWAMY K, EISELE G.Sound character of electric vehicles[C]//SAE Noise and Vibration Conference and Exhibition, 2011.
[16] GARCIA J J, BLECON Y, DALMAU M J.On electric vehicle alert for detection and emergency response[C]//Proceedings of the FISITA 2012 World Automotive Congress. Berlin, Heidelberg: Springer, 2013: 463-475.
[17] 夏云飞, 程子敬, 史府鑫, 等. 新能源汽车和内燃机汽车噪声特性比较分析[J]. 声学与振动, 2020, 8(3): 77-87.
XIA Y F, CHENG Z J, SHI F X, et al.Comparative analysis of noise characteristics of new energy vehicles and internal combustion engine vehicles[J]. Open journal of acoustics and vibration, 2020, 8(3): 77-87.
[18] 张戎斌, 毕传兴, 张永斌. 采用偏相干分析方法识别挖掘机驾驶室的噪声源[J]. 噪声与振动控制, 2011, 31(4): 106-110.
ZHANG R B, BI C X, ZHANG Y B.Identification of excavator cab's noise source based on partial coherence analysis[J]. Noise and vibration control, 2011, 31(4): 106-110.
基金
内蒙古自治区“揭榜挂帅”项目(2022JBGS0027)