独立储能电站参与电能量和调频市场容量投标的协同优化

王子谋, 黄弦超, 史磊, 柴逸风, 舒隽

太阳能学报 ›› 2024, Vol. 45 ›› Issue (9) : 630-638.

PDF(1198 KB)
欢迎访问《太阳能学报》官方网站,今天是
PDF(1198 KB)
太阳能学报 ›› 2024, Vol. 45 ›› Issue (9) : 630-638. DOI: 10.19912/j.0254-0096.tynxb.2023-0719

独立储能电站参与电能量和调频市场容量投标的协同优化

  • 王子谋1, 黄弦超1, 史磊2, 柴逸风1, 舒隽1
作者信息 +

COLLABORATIVE OPTIMIZATION OF INDEPENDENT ENERGY STORAGE POWER STATION'S CAPACITY BIDDIND IN REAL-TIME ENERGY AND REQULATION MARKET

  • Wang Zimou1, Huang Xianchao1, Shi Lei2, Chai Yifeng1, Shu Jun1
Author information +
文章历史 +

摘要

首先,分别应用多面体不确定集合和基于Wasserstein距离的不确定集合描述调频信号和实时电能量和调频市场价格的不确定性。其次建立独立储能电站参与联合市场的分布式鲁棒优化模型,以协同优化不同市场的申报容量。模型中引入实时调频性能指标以反映调频响应对调频收入、充放电成本以及退化成本的综合影响,从而更好地优化储能的自调度计划。采用拉格朗日对偶法将所建立的分布式鲁棒优化模型转换为经典鲁棒优化模型,并通过去绝对值、构建分段函数等方法进行线性化后调用gurobi求解器进行求解。最后通过算例验证所提优化模型的正确性和有效性。

Abstract

Firstly, the polyhedral uncertainty set and the uncertainty set based on Wasserstein distance are used to describe the uncertainty of regulation signal and real-time energy- regulation market price respectively. Secondly, a distributionally robust optimization model of independent energy storage power stations participating in the joint market is established to collaboratively optimize the declared capacity of different markets. In the model, the real-time frequency regulation performance index is introduced to reflect the comprehensive influence of frequency regulation response on regulation revenue, charge and discharge cost and degradation cost, so as to better optimize the self-scheduling plan of energy storage. Then, the Lagrangian dual method is used to transform the established distributionally robust optimization model into a classical robust optimization model, and the Gurobi solver is used to solve the problem after linearization by removing the absolute value and constructing the piecewise function. Finally, the correctness and effectiveness of the proposed optimization model are verified by an example.

关键词

储能 / 调频 / 不确定性分析 / 分布鲁棒优化 / 实时调频性能

Key words

energy storage / frequency regulation / uncertainty analysis / distributionally robust optimization / real-time regulation performance

引用本文

导出引用
王子谋, 黄弦超, 史磊, 柴逸风, 舒隽. 独立储能电站参与电能量和调频市场容量投标的协同优化[J]. 太阳能学报. 2024, 45(9): 630-638 https://doi.org/10.19912/j.0254-0096.tynxb.2023-0719
Wang Zimou, Huang Xianchao, Shi Lei, Chai Yifeng, Shu Jun. COLLABORATIVE OPTIMIZATION OF INDEPENDENT ENERGY STORAGE POWER STATION'S CAPACITY BIDDIND IN REAL-TIME ENERGY AND REQULATION MARKET[J]. Acta Energiae Solaris Sinica. 2024, 45(9): 630-638 https://doi.org/10.19912/j.0254-0096.tynxb.2023-0719
中图分类号: TM732   

参考文献

[1] 苏烨, 石剑涛, 张江丰, 等. 考虑调频的储能规划与竞价策略综述[J]. 电力自动化设备, 2021, 41(9): 191-198.
SU Y, SHI J T, ZHANG J F, et al.Review on planning and bidding strategy of energy storage considering frequency regulation[J]. Electric power automation equipment, 2021, 41(9): 191-198.
[2] 李军徽, 侯涛, 穆钢, 等. 电力市场环境下考虑风电调度和调频极限的储能优化控制[J]. 电工技术学报, 2021, 36(9): 1791-1804.
LI J H, HOU T, MU G, et al.Optimal control strategy for energy storage considering wind farm scheduling plan and modulation frequency limitation under electricity market environment[J]. Transactions of China Electrotechnical Society, 2021, 36(9): 1791-1804.
[3] 王霞, 应黎明, 卢少平. 考虑动态频率约束的一次调频和二次调频联合优化模型[J]. 电网技术, 2020, 44(8): 2858-2867.
WANG X, YING L M, LU S P.Joint optimization model for primary and secondary frequency regulation considering dynamic frequency constraint[J]. Power system technology, 2020, 44(8): 2858-2867.
[4] GOROOHI SARDOU I, KHODAYAR M E, KHALEDIAN K, et al.Energy and reserve market clearing with microgrid aggregators[J]. IEEE transactions on smart grid, 2016, 7(6): 2703-2712.
[5] 季珉杰, 张沛超, 姚垚, 等. 采用基于市场控制的微网分布式能量优化方法[J]. 电力系统自动化, 2017, 41(15): 34-41.
JI M J, ZHANG P C, YAO Y, et al.Distributed energy optimization method for microgrid using market-based control[J]. Automation of electric power systems, 2017, 41(15): 34-41.
[6] 郭伟清. 风电储能联合系统参与实时能量-调频市场的运行策略研究[D]. 南京: 南京理工大学, 2020.
GUO W Q.Research on operation strategy of combined wind-storage system participating in real-time energy and regulation market[D]. Nanjing: Nanjing University of Science and Technology, 2020.
[7] XIE Y Y, GUO W Q, WU Q W, et al.Robust MPC-based bidding strategy for wind storage systems in real-time energy and regulation markets[J]. International journal of electrical power & energy systems, 2021, 124: 106361.
[8] 王浩浩, 陈嘉俊, 朱涛, 等. 计及储能寿命与调频性能的风储联合投标模型及算法[J]. 电网技术, 2021, 45(1): 208-217.
WANG H H, CHEN J J, ZHU T, et al.Joint bidding model and algorithm of wind-storage system considering energy storage life and frequency regulation performance[J]. Power system technology, 2021, 45(1): 208-217.
[9] 陈浩. 规模化储能应用于电网调频的容量配置及控制策略研究[D]. 太原: 太原理工大学, 2020.
CHEN H.Research on capacity allocation and control strategy of large-scale energy storage applied to power grid frequency regulation[D]. Taiyuan: Taiyuan University of Technology, 2020.
[10] SHI Y Y, XU B L, WANG D, et al.Using battery storage for peak shaving and frequency regulation: joint optimization for superlinear gains[J]. IEEE transactions on power systems, 2018, 33(3): 2882-2894.
[11] 张新松, 袁越, 曹阳. 考虑损耗成本的电池储能电站建模及优化调度[J]. 电网技术, 2017, 41(5): 1541-1548.
ZHANG X S, YUAN Y, CAO Y.Modeling and scheduling for battery energy storage station with consideration of wearing costs[J]. Power system technology, 2017, 41(5): 1541-1548.
[12] HE G N, CHEN Q X, KANG C Q, et al.Optimal operating strategy and revenue estimates for the arbitrage of a vanadium redox flow battery considering dynamic efficiencies and capacity loss[J]. IET generation, transmission & distribution, 2016, 10(5): 1278-1285.
[13] SADEGHI S, JAHANGIR H, VATANDOUST B, et al.Optimal bidding strategy of a virtual power plant in day-ahead energy and frequency regulation markets: a deep learning-based approach[J]. International journal of electrical power & energy systems, 2021, 127: 106646.
[14] LIU X, LI Y, LIN X S, et al.Dynamic bidding strategy for a demand response aggregator in the frequency regulation market[J]. Applied energy, 2022, 314: 118998.
[15] 孙国强, 周亦洲, 卫志农, 等. 能量和旋转备用市场下虚拟电厂热电联合调度鲁棒优化模型[J]. 中国电机工程学报, 2017, 37(11): 3118-3128, 3367.
SUN G Q, ZHOU Y Z, WEI Z N, et al.Thermal and electrical scheduling of a virtual power plant for participating in energy and spinning reserve markets based on robust optimization[J]. Proceedings of the CSEE, 2017, 37(11): 3118-3128, 3367.
[16] GONZÁLEZ-GARRIDO A, SAEZ-DE-IBARRA A, GAZTAÑAGA H, et al. Annual optimized bidding and operation strategy in energy and secondary reserve markets for solar plants with storage systems[J]. IEEE transactions on power systems, 2019, 34(6): 5115-5124.
[17] 余爽, 卫志农, 孙国强, 等. 考虑不确定性因素的虚拟电厂竞标模型[J]. 电力系统自动化, 2014, 38(22): 43-49.
YU S, WEI Z N, SUN G Q, et al.A bidding model for a virtual power plant considering uncertainties[J]. Automation of electric power systems, 2014, 38(22): 43-49.
[18] WU C T, LIN X N, SUI Q, et al.Two-stage self-scheduling of battery swapping station in day-ahead energy and frequency regulation markets[J]. Applied energy, 2021, 283: 116285.
[19] 朱继忠, 熊小伏, 刘乔波, 等. 现货市场下计及风光联合预测误差的经济调度[J]. 太阳能学报, 2021, 42(5): 450-458.
ZHU J Z, XIONG X F, LIU Q B, et al.Economic dispatching considering joint wind and pv power forecast error in electricity spot market[J]. Acta energiae solaris sinica, 2021, 42(5): 450-458.
[20] 张巍, 缪辉. 基于云储能租赁服务的风储参与能量-调频市场竞价策略研究[J]. 电网技术, 2021, 45(10): 3840-3852.
ZHANG W, MIAO H.Bidding strategies of wind power and energy storage participating in energy and frequency regulation market based on cloud energy storage leasing services[J]. Power system technology, 2021, 45(10): 3840-3852.
[21] 郭钰锋, 潘梦琪. 基于风功率三参数幂律模型预测日前调频需求的调频辅助服务市场研究[J]. 中国电机工程学报, 2021, 41(20): 6941-6949.
GUO Y F, PAN M Q.Research on frequency modulation ancillary service market based on three parameter power law model of wind power to predict the day-ahead frequency modulation demand[J]. Proceedings of the CSEE, 2021, 41(20): 6941-6949.
[22] 刘庆楷, 刘明波, 陆文甜. 考虑退化成本的电池储能参与调频辅助服务市场的控制方法[J]. 电网技术, 2021, 45(8): 3043-3051.
LIU Q K, LIU M B, LU W T.Control method for battery energy storage participating in frequency regulation market considering degradation cost[J]. Power system technology, 2021, 45(8): 3043-3051.
[23] 林阿竹, 柯清辉, 江岳文. 独立储能参与调频辅助服务市场机制设计[J]. 电力自动化设备, 2022, 42(12): 26-34.
LIN A Z, KE Q H, JIANG Y W.Market mechanism design of independent energy storage participating in frequency modulation auxiliary service market[J]. Electric power automation equipment, 2022, 42(12): 26-34.
[24] HE G N, CHEN Q X, KANG C Q, et al.Optimal bidding strategy of battery storage in power markets considering performance-based regulation and battery cycle life[J]. IEEE transactions on smart grid, 2016, 7(5): 2359-2367.
[25] 苏连成, 朱娇娇, 郭高鑫, 等. 基于XGBoost和Wasserstein距离的风电机组塔架振动监测研究[J]. 太阳能学报, 2023, 44(1): 306-312.
SU L C, ZHU J J, GUO G X, et al.Research on wind turbine tower vibration monitoring based on xgboost and Wasserstein distance[J]. Acta energiae solaris sinica, 2023, 44(1): 306-312.
[26] 王子乐, 王子谋, 蔡莹, 等. 基于长短期记忆神经网络组合算法的短期电力负荷预测[J]. 现代电力, 2023, 40(2): 201-209.
WANG Z Y, WANG Z M, CAI Y, et al.Short-term load forecasting based on long short-term memory network combination algorithm[J]. Modern electric power, 2023, 40(2): 201-209.
[27] 袁爽, 何银国, 戴朝华, 等. 风电时间相关性多面体不确定性建模与鲁棒机组组合优化[J]. 太阳能学报, 2020, 41(9): 293-301.
YUAN S, HE Y G, DAI C H, et al.Polyhedral uncertainty modeling and robust optimization in unit commitment considering wind temporal correlation[J]. Acta energiae solaris sinica, 2020, 41(9): 293-301.
[28] DUAN C, FANG W L, JIANG L, et al.Distributionally robust chance-constrained approximate AC-OPF with Wasserstein metric[J]. IEEE transactions on power systems, 2018, 33(5): 4924-4936.
[29] Monitoring Analytics, LLC. PJM State of the market-2022[EB/OL].(2023-03-10).https://www.monitoringanalytics.com/reports/PJM_State_of_the_Market/2022/2022-som-pjm-sec10.pdf.

基金

国家重点研发计划(2022YFB2403200)

PDF(1198 KB)

Accesses

Citation

Detail

段落导航
相关文章

/