以一次风力发电机组雷击致灾过程为研究对象,通过对该事故雷暴天气的大气环流形势和大气能量、环境温湿度、热力和动力稳定度,以及雷暴云组合反射率、云顶温度、相态微物理条件和闪电电流强度、剩磁场强度等电过程分析提炼了其致灾过程指标。结果表明,本次雷电灾害等级为重大雷电灾害事故,此次致灾雷暴过程雷达回波组合反射率、云顶温度和相态及雷电流幅值的平均强度属于中等强度,而K指数、500和850 hPa的温度差和假相当位温、总指数TT以及中层垂直风切变对此次致灾过程的指示性较好,从剩磁测试、雷电熔痕现场取证可确定其机舱罩起火原因,因此加强风电场雷电监测预警、风险评估等非工程性防雷措施具有重要意义。
Abstract
Based on one lightning disaster process of the wind turbine, this study identified the disaster-causing process indicators by analyzing the related atmospheric circulation and energy, environmental temperature and humidity, thermal and dynamic stability, as well as the combined reflectivity of thunderstorm clouds, cloud top temperature, phase microphysical conditions, lightning current intensity, residual magnetic field strength, and other electrical processes. The results show that this lightning disaster was classified as a major lightning disaster accident. The average intensity of its associated radar echo combined reflectivity, cloud top temperature and phase state, and lightning current amplitude during the thunderstorm process were all moderate. All of the K index, vertical gradients of temperature and potential temperature between 500 and 800 hPa, total index TT, and mid-level vertical wind shear were exhibited good indications of the disaster process. Finally, with the help of residual magnetic test and lightning melt investigation, the cause of the fire of the cabin cover was recognized. Therefore, it is of great significance to strengthen non-engineering lightning protection measures such as lightning monitoring and early warning and risk assessment in wind farms.
关键词
风电机组 /
雷击 /
灾害 /
预警 /
风险 /
卫星
Key words
wind turbines /
lightning /
disaster /
early warning /
risk /
satellite
{{custom_sec.title}}
{{custom_sec.title}}
{{custom_sec.content}}
参考文献
[1] 国家能源局. 国家能源局发布2022年全国电力工业统计数据[EB/OL]. http://www.nea.gov.cn/2023-01/18/c_1310691509.htm, 2023-01-18.
National Energy Administration. The National Energy Administration released statistics on the country's power industry in2022[EB/OL]. http://www.nea.gov.cn/2023-01/18/c_1310691509.htm, 2023-01-18.
[2] 李谦, 刘光平, 钱启良,等. 湖南东方风电场Ⅱ期风力发电设备故障及雷害分析[J]. 风力发电, 2002(3): 22-27.
LI Q, LIU G P, QIAN Q L, et al.Failure analysis of wind power generation equipment in Hainan east wind farm II and its lightning strike condition[J]. Wind turbine generator, 2002(3): 22-27.
[3] CANDELA G A, MADSEN S F, NISSIM M, et al.Lightning damage to wind turbine blades from wind farms in the US[J]. IEEE transactions on power delivery, 2016, 31(3): 1043-1049.
[4] GLUSHAKOW B.Effective lightning protection for wind turbine generators[J]. IEEE transactions on energy conversion, 2007, 22(1): 214-222.
[5] IEC 61400-24:2019,Wind turbine generator systems - part 24: lightning protection[S].
[6] BECERRA M, COORAY V.A simplified physical model to determine the lightning upward connecting leader inception[J]. IEEE transactions on power delivery, 2006, 21(2): 897-908.
[7] BECERRA M, COORAY V.A self-consistent upward leader propagation model[J]. Journal of physics D applied physics, 2006, 39(16): 3708-3715.
[8] BECERRA M, COORAY V.Time dependent evaluation of the lightning upward connecting leader inception[J]. Journal of physics, D applied physics: a europhysics journal, 2006, 39(21): 4695-4702.
[9] 师伟, 李庆民. 基于先导放电理论的雷击上行先导起始研究[J]. 中国电机工程学报, 2014, 34(15): 2470-2477.
SHI W, LI Q M.Research on the lightning upward leader inception based on leader discharge theory[J]. Proceedings of the CSEE, 2014, 34(15): 2470-2477.
[10] MA Y F, GUO Z X, LI Q M, et al.Processing of upward leader on the wind turbine blade and critical length inception criterion[C]//2016 33rd International Conference on Lightning Protection (ICLP). Estoril, Portugal, 2016: 1-5.
[11] LONG M N, BECERRA M, THOTTAPPILLIL R.On the attachment of dart lightning leaders to wind turbines[J]. Electric power systems research, 2017, 151: 432-439.
[12] LONG M N, BECERRA M, THOTTAPPILLIL R.Modeling the attachment of lightning dart and dart-stepped leaders to grounded objects[J]. IEEE transactions on electromagnetic compatibility, 2017, 59(1): 128-136.
[13] YOKOYAMA S.Lightning protection of wind turbine blades[J]. Electric power systems research, 2013, 94: 3-9.
[14] ABD-ELHADY A M, SABIHA N A, IZZULARAB M A. Experimental evaluation of air-termination systems for wind turbine blades[J]. Electric power systems research, 2014, 107: 133-143.
[15] 王晓辉, 张小青. 风电机组内电子设备的雷电电磁干扰分析[J]. 高电压技术, 2009, 35(8): 2019-2023.
WANG X H, ZHANG X Q.Analysis of the lightning electromagnetic interference to electronic devices in wind generation systems[J]. High voltage engineering, 2009, 35(8): 2019-2023.
[16] YAMAMOTO K, CHIKARA T, AMETANI A.A study of transient magnetic fields in a nacelle of a wind turbine generator system due to lightning[J]. IEEJ transactions on power and energy, 2009, 129(5): 628-636.
[17] WABG X H, ZHANG X Q.Modelling and simulation of lightning transients in wind turbine grounding systems[J]. Journal of system simulation, 2010, 22(8): 1805-1808.
[18] AHMED M R, ISHII M.Effectiveness of interconnection of wind turbine grounding influenced by interconnection wire[C]//2012 International Conference on Lightning Protection (ICLP), Vienna, Austria, 2012: 1-6.
[19] 陶世祺, 张小青, 王耀武, 等. 直接雷击时风电机组的暂态响应分析[J]. 太阳能学报, 2017, 38(10): 2675-2682.
TAO S Q, ZHANG X Q, WANG Y W, et al.Analysis of transient responses on wind turbines during direct lightning strike[J]. Acta energiae solaris sinica, 2017, 38(10): 2675-2682.
[20] 陶世祺, 张小青, 王耀武, 等. 风电机组的雷电暂态过电压统计研究[J]. 太阳能学报, 2018, 39(11): 3261-3269.
TAO S Q, ZHANG X Q, WANG Y W, et al.Statistical analysis of lightning transient overvoltage on wind turbines[J]. Acta energiae solaris sinica, 2018, 39(11): 3261-3269.
[21] 王国政, 张黎, 吴昊, 等. 海上风机一体化电磁暂态模型与雷电暂态过电压研究[J]. 电力自动化设备, 2017, 37(11): 32-38.
WANG G Z, ZHANG L, WU H, et al.Electromagnetic transient integration model and transient overvoltage study of offshore wind turbine[J]. Electric power automation equipment, 2017, 37(11): 32-38.
[22] 陶世祺. 海上风力发电机组雷电瞬态研究[D]. 北京: 北京交通大学, 2019.
TAO S Q.Study on lightning transient of offshore wind turbines[D]. Beijing: Beijing Jiaotong University, 2019.
[23] 斯琴, 王佳津, 荀学义, 等. 基于T639对流参数的内蒙古强对流天气潜势预报方法初探[J]. 干旱气象, 2016, 34(5): 906-911.
SI Q, WANG J J, XUN X Y, et al.Preliminary study on potential forecast method of strong convective weather in Inner Mongolia based on T639 convective parameters[J]. Journal of arid meteorology, 2016, 34(5): 906-911.
[24] 俞小鼎, 周小刚, 王秀明. 雷暴与强对流临近天气预报技术进展[J]. 气象学报, 2012, 70(3): 311-337.
YU X D, ZHOU X G, WANG X M.The advances in the nowcasting techniques on thunderstorms and severe convection[J]. Acta meteorologica sinica, 2012, 70(3): 311-337.
[25] 刘健文. 天气分析预报物理量计算基础[M]. 北京: 气象出版社, 2005.
LIU J W.Calculation basis of physical quantities for weather analysis and forecast[M]. Beijing: China Meteorological Press, 2005.
[26] 雷蕾, 孙继松, 魏东. 利用探空资料判别北京地区夏季强对流的天气类别[J]. 气象, 2011, 37(2): 136-141.
LEI L, SUN J S, WEI D.Distinguishing the category of the summer convective weather by sounding data in Beijing[J]. Meteorological monthly, 2011, 37(2): 136-141.
[27] 袁慧敏. 利用探空资料确定呼和浩特地区3类强对流天气预警阈值[J]. 气象科技, 2019, 47(3): 476-485.
YUAN H M.Using radiosonde data to determine warning thresholds of three types of strong convective weather in Hohhot Area[J]. Meteorological science and technology, 2019, 47(3): 476-485.
[28] 巩敏莹, 靳英燕. 西北区东部一次雷暴天气过程的诊断分析[J]. 高原气象, 2009, 28(1): 203-208.
GONG M Y, JIN Y Y.Diagnosis analysis on a thunderstorm event in the east of Northwest China[J]. Plateau meteorology, 2009, 28(1): 203-208.
[29] GB/T 16840.2—2021, 电气火灾痕迹物证技术鉴定方法—第2部分: 剩磁检测法[S].
GB/T 16840.2—2021, Technical identification method of electrical fire trace physical evidence-Part 2: residual magnetic detection method[S].
[30] QX/T 103—2017, 雷电灾害调查技术规范[S].
QX/T 103—2017, Technical specification for lightning disaster investigation[S].
[31] 刘晓东. 内蒙古雷电灾害综合风险调查及评估区划技术研究与应用[M]. 呼和浩特: 内蒙古大学出版社,2022.
LIU X D.Research and application of comprehensive risk investigation and evaluation zoning technology of lightning disaster in Inner Mongolia[M]. Hohhot: Inner Mongolian University Press,2022.
[32] NB/T 31039—2012, 风力发电机组雷电防护系统技术规范[S].
NB/T 31039—2012, Technical specification for lightning protection system of wind turbine[S].
基金
内蒙古自治区自然科学基金(2020MS04005)