针对由可再生能源组成的直流电网电解氢系统,通过设计一种基于线性二次型最优控制(LQR)的全状态反馈控制方法,建立全状态误差量的小信号模型,利用系统状态误差量反馈的方法,在新能源并网带来的供电干扰和负荷波动下,改善DC-DC变流器的动态特性,提高电解设备的运行效率和槽内材料的寿命。结果证明,该方法可以显著地降低系统的电压、电流波动时间,且与常规的PI控制相比,对系统干扰的抑制效果更好。最后,对线性二次型最优控制所提出的理论与方法进行仿真验证,证明其正确性与适用性。
Abstract
This paper proposes a full state feedback control method based on linear quadratic optimal control(LQR) for a DC power grid electrolysis hydrogen system composed of renewable energy sources. A small signal model with full state error is established, and the system state error feedback method is used to improve the dynamic characteristics of the DC-DC converter, improve the operational efficiency of electrolysis equipment, and prolong the life of materials in the tank under the power supply interference and load fluctuations caused by the integration of new energy sources into the grid. The results show that this method can significantly reduce the voltage and current fluctuation time of the system, and compared with conventional PI control, it has a better suppression effect on system interference. Finally, the theory and method proposed in the article were simulated and verified to demonstrate their correctness and applicability.
关键词
新能源 /
DC-DC变流器 /
电解制氢 /
状态反馈 /
线性二次型最优控制 /
抗扰特性
Key words
new energy /
DC-DC converters /
hydrogen production /
state feedback /
LQR /
tolerance characteristic
{{custom_sec.title}}
{{custom_sec.title}}
{{custom_sec.content}}
参考文献
[1] 许世森, 张瑞云, 程健, 等. 电解制氢与高温燃料电池在电力行业的应用与发展[J]. 中国电机工程学报, 2019, 39(9): 2531-2537.
XU S S, ZHANG R Y, CHENG J, et al.Application and development of electrolytic hydrogen production and high temperature fuel cell in electric power industry[J]. Proceedings of the CSEE, 2019, 39(9): 2531-2537.
[2] 张诚, 檀志恒, 晁怀颇. “双碳” 背景下数据中心氢能应用的可行性研究[J]. 太阳能学报, 2022, 43(6): 327-334.
ZHANG C, TAN Z H, CHAO H P.Feasibility study of hydrogen energy application on data center under “carbon peaking and neutralization” background[J]. Acta energiae solaris sinica, 2022, 43(6): 327-334.
[3] 潘光胜, 顾伟, 张会岩, 等. 面向高比例可再生能源消纳的电氢能源系统[J]. 电力系统自动化, 2020, 44(23): 1-10.
PAN G S, GU W, ZHANG H Y, et al.Electricity and hydrogen energy system towards accomodation of high proportion of renewable energy[J]. Automation of electric power systems, 2020, 44(23): 1-10.
[4] KOPONEN J, RUUSKANEN V, HEHEMANN M, et al.Effect of power quality on the design of proton exchange membrane water electrolysis systems[J]. Applied energy, 2020, 279: 115791.
[5] 周雅夫, 邵芳雪, 黄立建, 等. 燃料电池车用新型低纹波DC/DC变换器设计[J]. 吉林大学学报(工学版), 2020, 50(4): 1201-1208.
ZHOU Y F, SHAO F X, HUANG L J, et al.Design of a new low ripple DC/DC converter for fuel cell vehicles[J]. Journal of Jilin University (engineering and technology edition), 2020, 50(4): 1201-1208.
[6] GUILBERT D, SORBERA D, VITALE G.A stacked interleaved DC-DC buck converter for proton exchange membrane electrolyzer applications: design and experimental validation[J]. International journal of hydrogen energy, 2020, 45(1): 64-79.
[7] ZORICA S, VUKŠIĆ M, BETTI T. Design considerations of the multi-resonant converter as a constant current source for electrolyser utilisation[J]. International journal of electrical power & energy systems, 2019, 111: 237-247.
[8] GAUTAM D S, BHAT A K S. A comparison of soft-switched DC-to-DC converters for electrolyzer application[J]. IEEE transactions on power electronics, 2013, 28(1): 54-63.
[9] GUIDA V, GUILBERT D, DOUINED B.“Candidate Interleaved DC-DC Buck Converters for Electrolyzers: State-of-the-Art and Perspectives”[C]//2018 IEEE International Conference on Environment and Electrical Engineering and 2018 IEEE Industrial and Commercial Power Systems Europe (EEEIC / I&CPS Europe).Palermo, Italy, 2018.
[10] GUILBERT D, COLLURA S M, SCIPIONI A.DC/DC converter topologies for electrolyzers: state-of-the-art and remaining key issues[J]. International journal of hydrogen energy, 2017, 42(38): 23966-23985.
[11] CAVALLARO C, CECCONI V, CHIMENTO F, et al.A phase-shift full bridge converter for the energy management of electrolyzer systems[C]//2007 IEEE International Symposium on Industrial Electronics. Vigo, Spain, 2007: 2649-2654.
[12] RODRÍGUEZ-CABERO A, PRODANOVIC M, ROLDÁN-PÉREZ J. Full-state feedback control of back-to-back converters based on differential and common power concepts[J]. IEEE transactions on industrial electronics, 2019, 66(11): 9045-9055.
[13] 刘豹, 唐万生. 现代控制理论[M]. 3版. 北京: 机械工业出版社, 2006.
LIU B, TANG W S.Modern control theory[M]. 3rd ed. Beijing: China Machine Press, 2006.
[14] XIA P Z, SHI H C, WEN H Q, et al.Robust LMI-LQR control for dual-active-bridge DC-DC converters with high parameter uncertainties[J]. IEEE transactions on transportation electrification, 2020, 6(1): 131-145.
[15] ABDULLAH M A, TAN C W, YATIM A H M. A simulation comparison of PI and Linear Quadratic Regulator controllers in DC-DC converter[C]//2015 IEEE Conference on Energy Conversion (CENCON). Johor Bahru, Malaysia, 2015: 37-41.
[16] OLALLA C, LEYVA R, EL AROUDI A, et al.Robust LQR control for PWM converters: an LMI approach[J]. IEEE transactions on industrial electronics, 2009, 56(7): 2548-2558.
[17] 罗承先. 世界可再生能源电力制氢现状[J]. 中外能源, 2017, 22(8): 25-32.
LUO C X.Present status of power-to-hydrogen technology worldwide using renewable energy[J]. Sino-global energy, 2017, 22(8): 25-32.
[18] ULLEBERG Ø.Stand-alone power systems for the future: optimal design, operation & control of solar-hydrogen energy systems[J]. International journal of hydrogen energy, 1998, 26(1): 25-26.
[19] ULLEBERG Ø.Modeling of advanced alkaline electrolyzers: a system simulation approach[J]. International journal of hydrogen energy, 2003, 28(1): 21-33.
[20] ZHOU T, FRANCOIS B.Modeling and control design of hydrogen production process for an active hydrogen/wind hybrid power system[J]. International journal of hydrogen energy, 2009, 34(1): 21-30.
[21] 郭伟. 基于PV/SOFC混合发电系统的建模及性能仿真研究[D]. 济南: 山东大学, 2014.
GUO W.Research on the modeling and performance simulation for hybrid generation system based on PV/SOFC technology[D]. Ji'nan: Shandong University, 2014.
[22] 牛萌, 洪振鹏, 李蓓, 等. 考虑制氢效率提升的风电制氢系统优化控制策略[J]. 太阳能学报, 2023, 44(9): 366-376.
NIU M, HONG Z P, LI B, et al.Optimal control strategy of wind power to hydrogen system considering electrolyzer efficiency improvement[J]. Acta energiae solaris sinica, 2023, 44(9): 366-376.
[23] ALEPUZ S, BUSQUETS-MONGE S, BORDONAU J, et al.Control strategies based on symmetrical components for grid-connected converters under voltage dips[J]. IEEE transactions on industrial electronics, 2009, 56(6): 2162-2173.
[24] HUERTA F, PÉREZ J, CÓBRECES S, et al. Frequency-adaptive multiresonant LQG state-feedback current controller for LCL-filtered VSCs under distorted grid voltages[J]. IEEE transactions on industrial electronics, 2018, 65(11): 8433-8444.
基金
国家电网公司科技项目(B311ZS220001)