不同工况下双热源热泵供热性能研究及除霜实验

高昊天, 苑翔, 季轩昂

太阳能学报 ›› 2024, Vol. 45 ›› Issue (9) : 237-242.

PDF(1279 KB)
欢迎访问《太阳能学报》官方网站,今天是
PDF(1279 KB)
太阳能学报 ›› 2024, Vol. 45 ›› Issue (9) : 237-242. DOI: 10.19912/j.0254-0096.tynxb.2023-0735

不同工况下双热源热泵供热性能研究及除霜实验

  • 高昊天, 苑翔, 季轩昂
作者信息 +

RESEARCH ON HEATING PERFORMANCE AND DEFROSTING EXPERIMENT OF DOUBLE HEAT SOURCE HEAT PUMP UNDER DIFFERENT WORKING CONDITIONS

  • Gao Haotian, Yuan Xiang, Ji Xuanang
Author information +
文章历史 +

摘要

以空气、水为热源,实验研究双热源热泵水冷蒸发器不同水温、水量占比对系统制热性能的影响。通过温控器将水温分为20、30 ℃两档,通过阀门控制水冷蒸发器水量占比在0%、67%、100%三档,共设置4组不同工况对制热性能进行对比研究,分析不同工况下水冷蒸发器进出口温度、制热量变化,研究双热源热泵和单空气源热泵在除霜期的制热量变化规律。研究表明:水源的补热作用可提升系统制热性能,相较于单空气源系统,其他3种工况下双热源系统运行期间平均能效比分别为2.26、2.61、2.54,相较于单空气源系统提升31.4%、51.7%、47.7%,其中工况2、工况3的系统能效比最高值可达3.04、3.44。温度高、水量占比大的水冷蒸发器对系统的补热作用明显,相同水量下,水温高的系统能效比提升效果好。同时水源的补热作用可改善系统的结霜问题,单空气源系统相较于双热源系统除霜时间长、效果差,在强制除霜的作用下会消耗掉部分系统制热量,导致其能效比低于双热源系统。

Abstract

Using air and water as heat sources, the effects of different water temperature and water ratio on the heating performance of a double-heat pump water-cooled evaporator were experimentally studied. The water temperature is divided into 20℃and 30℃by the temperature controller, and the water proportion of the water-cooled evaporator is controlled by the valve at three levels of 0%, 67% and 100%. Four groups of different working conditions are set for comparative study on the heating performance, and the changes in the inlet and outlet temperature and heat production of the water-cooled evaporator under different working conditions are analyzed. The variation of heat produced by double heat source heat pump and single air source heat pump in frost removal period was studied. The study shows that compared with the single air source system, the average COP of the dual heat source system during the three operating conditions was 2.26, 2.61 and 2.54, respectively, which increased by 34.1%,51.7% and 47.7% compared with the single air source system. Among them, the COP of the system in working conditions 2 and 3 can reach the highest of 3.04 and 3.44. The water-cooled evaporator with high temperature and large water proportion has obvious replenishment effect on the system. Under the same water quantity, the system energy efficiency ratio with high water temperature is better. At the same time, the heat replenishment of water source can improve the frost formation problem of the system. Compared with the dual heat source system, the defrosting time of the single air source system is longer and the effect is poor. Under the action of forced defrosting, part of the system's heat production is consumed, resulting in a lower COP than that of the dual heat source system.

关键词

热泵系统 / 性能系数 / 除霜 / 双热源 / 水量占比

Key words

heat pump systems / coefficient of performance / defrosting / double heat source / water proportion

引用本文

导出引用
高昊天, 苑翔, 季轩昂. 不同工况下双热源热泵供热性能研究及除霜实验[J]. 太阳能学报. 2024, 45(9): 237-242 https://doi.org/10.19912/j.0254-0096.tynxb.2023-0735
Gao Haotian, Yuan Xiang, Ji Xuanang. RESEARCH ON HEATING PERFORMANCE AND DEFROSTING EXPERIMENT OF DOUBLE HEAT SOURCE HEAT PUMP UNDER DIFFERENT WORKING CONDITIONS[J]. Acta Energiae Solaris Sinica. 2024, 45(9): 237-242 https://doi.org/10.19912/j.0254-0096.tynxb.2023-0735
中图分类号: TU83   

参考文献

[1] 王沣浩, 王志华, 郑煜鑫, 等. 低温环境下空气源热泵的研究现状及展望[J]. 制冷学报, 2013, 34(5): 47-54.
WANG F H, WANG Z H, ZHENG Y X, et al.Research progress and prospect of air source heat pump in low temperature environment[J]. Journal of refrigeration, 2013, 34(5): 47-54.
[2] 俞丽华, 马国远, 徐荣保. 低温空气源热泵的现状与发展[J]. 建筑节能, 2007, 35(3): 54-57.
YU L H, MA G Y, XU R B.Current status and development of low temperature air-source heat pump[J]. Construction conserves energy, 2007, 35(3): 54-57.
[3] 付洋. 家用双热源热泵整体浴室模拟与实验研究[D]. 天津: 河北工业大学, 2016.
FU Y.Simulation and experimental research on household dual heat source heat pump bath unit[D]. Tianjin: Hebei University of Technology, 2016.
[4] 贡静宝. 太阳能-空气源双热源复合热泵系统运行特性及优化控制研究[D]. 邯郸: 河北工程大学, 2021.
GONG J B.Study on operation characteristics and optimal control of solar-air double heat source composite heat pump system[D]. Handan: Hebei University of Engineering, 2021.
[5] 徐俊芳, 赵耀华, 王皆腾, 等. 新型空气-水双热源复合热泵系统性能和除霜实验[J]. 化工学报, 2017, 68(11): 4301-4308.
XU J F, ZHAO Y H, WANG J T, et al.System performance and defrosting test of new air-water double source composite heat pump system[J]. CIESC journal, 2017, 68(11): 4301-4308.
[6] LIU X Y, LAU S K, LI H R.Optimization and analysis of a multi-functional heat pump system with air source and gray water source in heating mode[J]. Energy and buildings, 2014, 69: 1-13.
[7] 代兰花. 基于热源优先级的双热源热泵系统动态仿真与实验研究[D]. 大连: 大连理工大学, 2017.
DAI L H.Dynamic simulation and experimental study on dual heat sources heat pump system based on heat sources priority[D]. Dalian: Dalian University of Technology, 2017.
[8] 李素芬, 代兰花, 尚妍, 等. 基于不同动态负荷的太阳能辅助地源热泵系统供暖特性研究[J]. 大连理工大学学报, 2015, 55(3): 243-251.
LI S F, DAI L H, SHANG Y, et al.Research on heating characteristics of a solar assisted ground source heat pump system under different dynamic loads[J]. Journal of Dalian University of Technology, 2015, 55(3): 243-251.
[9] DAI L H, LI S F, DUANMU L, et al.Experimental performance analysis of a solar assisted ground source heat pump system under different heating operation modes[J]. Applied thermal engineering, 2015, 75: 325-333.
[10] 刘寅, 周光辉, 李安桂, 等. 太阳能辅助空气源热泵空调低温特性研究[J]. 低温与超导, 2009, 37(10): 73-75, 35.
LIU Y, ZHOU G H, LI A G, et al.Performance research of solar assistant air source heat pump in low temperature condition[J]. Cryogenics and superconductivity, 2009, 37(10): 73-75, 35.
[11] 周光辉, 刘寅, 张岑, 等. 太阳能辅助空气源复合热泵冬季供热特性实验研究[J]. 太阳能学报, 2011, 32(11): 1662-1665.
ZHOU G H, LIU Y, ZHANG C, et al.Experimental study on heating performance of a solar assistant air source heat pump[J]. Acta energiae solaris sinica, 2011, 32(11): 1662-1665.
[12] 王岗, 全贞花, 赵耀华, 等. 太阳能-热泵复合供能系统[J]. 化工学报, 2017, 68(5): 2132-2139.
WANG G, QUAN Z H, ZHAO Y H, et al.Solar-heat pump combined energy system[J]. CIESC journal, 2017, 68(5): 2132-2139.
[13] 张迎迎, 王强, 回晓洋, 等. 太阳能-空气源复合热泵性能研究[J]. 制冷与空调, 2015, 15(6): 15-18.
ZHANG Y Y, WANG Q, HUI X Y, et al.Performance study on solar-air source heat pump[J]. Refrigeration and air-conditioning, 2015, 15(6): 15-18.
[14] 张超, 董家昀, 赵晓丹, 等. 双热源复合换热器复合换热温差影响因素分析[J]. 低温与超导, 2012, 40(7): 68-72.
ZHANG C, DONG J Y, ZHAO X D, et al.The influence factors of the compound heat-exchanging temperature difference of dual-source compound heat-exchanger[J]. Cryogenics & superconductivity, 2012, 40(7): 68-72.
[15] 范文英, 蒋绿林, 蔡宝瑞, 等. 空气源相变储能复合热泵系统的运行分析[J]. 可再生能源, 2021, 39(9):1175-1182.
FAN W Y, JIANG L L, CAI B R, et al.Operation analysis of air source phase change energy storage compound heat pump system[J]. Renewable energy resources, 2021, 39(9): 1175-1182.
[16] 黄韬, 唐兰, 陈海, 等. 空气源热泵分段除霜性能研究[J]. 制冷学报, 2023, 44(4): 112-119.
HUANG T, TANG L, CHEN H, et al.Study on the segmental defrosting performance of air-source heat pumps[J]. Journal of refrigeration, 2023, 44(4): 112-119.
[17] 赵洪运, 邱国栋, 宇世鹏. 可实现快速制热和除霜的蓄能型空气源热泵系统的实验研究[J]. 太阳能学报, 2021, 42(3): 184-190.
ZHAO H Y, QIU G D, YU S P.Experimental study on energy storage air source heat pump system with quick heating and defrosting[J]. Acta energiae solaris sinica, 2021, 42(3): 184-190.
[18] 董建锴, 张龙, 姜益强, 等. 不同相变蓄能器对多联机空气源热泵蓄能除霜性能影响[J]. 太阳能学报, 2016, 37(9): 2332-2337.
DONG J K, ZHANG L, JIANG Y Q, et al.Defrosting performance of multi-split air source heat pump using different phase change material-heat exchanger[J]. Acta energiae solaris sinica, 2016, 37(9): 2332-2337.

基金

京津冀科技创新协同项目(Z221100006022007)

PDF(1279 KB)

Accesses

Citation

Detail

段落导航
相关文章

/