该文选用石岛海域环境及光资源条件,综合考虑波浪作用下光伏组件倾角和方位角改变对太阳辐射量接收的影响,以及阵列中各模块辐射量差异所导致额外的失配损失,提出一种考虑波浪荷载的漂浮式多体光伏阵列系统电能输出仿真模型,比较固定式与漂浮式光伏系统的月度发电量并通过优化的变异系数评价漂浮式光伏阵列输出功率的波动性。该仿真方法可提高海上漂浮式光伏发电功率预测精度,进而提升光伏发电适应电力系统扰动能力。研究结果从电能输出及功率波动的角度验证了海上漂浮式光伏发电场的可行性。
Abstract
Based on the environmental conditions and light resources of ShiDao, this study proposes a simulation model for the power output of a floating photovoltaic multi-body array system. The model scrupulously factors in the influence of tilt and azimuth angle changes of photovoltaic panels due to the effect of wave on solar radiation reception, and also accounts for the additional mismatch losses caused by differences in radiation among modules within the array. A comparative analysis of the monthly electricity production of both fixed and floating photovoltaic systems is conducted, and the variability of the power output from floating photovoltaic arrays is evaluated using an optimized coefficient of variation. This novel simulation approach can enhance the accuracy of power prediction for offshore floating PV power generation, thereby bolstering the resilience of PV power generation against power system disturbances. The results affirm the feasibility of the floating PV plant from the perspectives of power output and power fluctuation.
关键词
漂浮式光伏 /
波浪荷载 /
失配损失 /
发电性能 /
仿真分析
Key words
floating photovoltaic /
wave load /
mismatch loss /
power generation performance /
simulation analysis
{{custom_sec.title}}
{{custom_sec.title}}
{{custom_sec.content}}
参考文献
[1] IEA. Electricity and heat CO2 emissions in the net zero scenario, 2000-2030[EB/OL].(2023-7-10)[2023-3-12]. https://www.iea.org/data-and-statistics/charts/electricity-and-heat-co2-emissions-in-the-net-zero-scenario-2000-2030.
[2] IEA. Renewables 2020[EB/OL].(2020-11) [2023-3-12]. https://www.iea.org/reports/renewables-2020.
[3] POURAN H M, MARIANA L C P, NOGUEIRA T, et al. Environmental and technical impacts of floating photovoltaic plants as an emerging clean energy technology[J]. Science, 2022, 25(11): 1-16.
[4] MANISH K, HUMAID N M, RAJESH G.Challenges and opportunities towards the development of floating photovoltaic systems[J]. Solar energy materials and solar cells, 2021, 233.
[5] FRANK H,SENIOR A, APRICUM. Floating solar PV gains global momentum[EB/OL]. (2020-9-22)[2023-3-12]. https://www.pv-magazine.com/2020/09/22/floating-solar-pv-gains-global-momentum/.
[6] 史宏达, 田会元, 孟珣. 基于TLP系泊振荡浮子波能发电装置锚固性能研究[J]. 太阳能学报, 2018, 39(3): 659-664.
SHI H D, TIAN H Y, MENG X.Mooring system analysis of submerged TLP foundation for heaving buoy wave energy convertor[J]. Acta energiae solaris sinica, 2018, 39(3): 659-664.
[7] 孟珣, 田会元, 李鑫. 基于动力特性的南海浮式风力机多准则评价[J]. 太阳能学报, 2016, 37(8): 2062-2067.
MENG X, TIAN H Y, LI X.Multi-criteria-decision-making of FOWT based on dynamic property[J]. Acta energiae solaris sinica, 2016, 37(8): 2062-2067.
[8] REN21. Renewables 2020 global satus report[EB/OL]. [2023-03-12]. https://www.ren21.net/gsr-2020.
[9] MARIA I, BENOAT D, RÉMY P, et al. Analytical method for loads determination on floating solar farms in three typical environments[J]. Solar energy, 2021, 219: 34-41.
[10] 郭军, 陈作钢, 肖福勤, 等. 光伏电站漂浮方阵波浪载荷数值分析研究[J]. 太阳能学报, 2021, 42(1): 1-6.
GUO J, CHEN Z G, XIAO F Q, et al.Numerical research on wave loads of floating photovoltalic power station[J]. Acta energiae solaris sinica, 2021, 42(1): 1-6.
[11] 何啸, 李国富, 葛霞, 等. 漂浮式光伏发电装置在海浪影响下的光照性能研究[J]. 工程设计学报, 2014, 21(6): 545-549.
HE X, LI G F, GE X, et al.Analysis of irradiation on floating solar panels affected by ocean waves[J]. Chinese journal of engineering design, 2014, 21(6): 545-549.
[12] RYAN B, LUCIANO S M, NICOLAS B.The effect of wave response motion on the insolation on offshore photovoltaic installations[J]. Solar energy advances, 2021, 1: 100008.
[13] GOLROODBARI Z S, SARK W.Simulation of performance differences between offshore and land-based photovoltaic systems[J]. Progress in photovoltaics: research and applications, 2020, 28(9): 873-886.
[14] DÖRENKÄMPER M, FOLKERTS W, DE JONG M M, et al. Influence of wave induced movements on the performance of floating PV systems[C]//36th European Photovoltaic Solar Energy Conference and Exhibition, France, 2019.
[15] FRIEL D, KARIMIRAD M, WHITTAKER T, et al.A review of floating photovoltaic design concepts and installed variations[C]//4th International Conference on Offshore Renewable Energy, UK, 2019.
[16] YU F, SU Y, LIU Y L, et al.Dynamic response of the mooring system in the floating photovoltaic power station[J]. Journal of physics: conference series, 2087(2021): 012028.
[17] 许鑫. 浮托安装系统耦合动力响应研究[D]. 上海: 上海交通大学, 2014.
XU X.Investigation on coupling dynamic response of the floatover system[D]. Shanghai: Shanghai Jiao Tong University,2014.
[18] 王桂波. 波浪与铰接多浮体系统相互作用的数值分析[D]. 大连: 大连理工大学, 2014.
WANG G B.Numerical analysis on the interaction between waves and hingly connected multiple floating bodies[D]. Dalian: Dalian University of Technology, 2014.
[19] 王树青, 梁丙臣. 海洋工程波浪力学[M]. 青岛: 中国海洋大学出版社, 2013: 37-46.
WANG S Q, LIANG B C.Wave mechanics for ocean engineering[M]. Qingdao: China Ocean University Press, 2013: 37-46.
[20] STEIN J, HANSEN C, RENO M. Global horizontal irradiance clear sky models?: implementation and analysis: SAND2012-2389, 1039404[R/OL].2012: SAND2012-2389, 1039404[2023-06-25]. https://www.osti.gov/servlets/purl/1039404/.
[21] PEREZ R, INEICHEN P, MOORE K, et al.A new operational model for satellite-derived irradiances: description and validation[J]. Solar energy, 2002, 73(5): 307-317.
[22] SANDIA N L.Plane of array (POA) irradiance[EB/OL]. [2023-3-12].https://pvpmc.sandia.gov/modeling-guide/1-weather-design-inputs/plane-of-array-poa-irradiance/.
[23] KRISHNA G S, MOGER T. Modelling and analysis of PV array connections under non-uniform irradiance conditions[C/OL]//2021 IEEE International Power and Renewable Energy Conference (IPRECON). Kollam, India: IEEE, 2021: 1-6[2022-06-01].https://ieeexplore.ieee.org/document/9640637/.
基金
国家自然科学基金(52071307); 山东省重点研发计划(2020CXGC010702); 水电水利规划设计总院项目(ZY-KJXN-20230025)