基于分光谱利用的新型塔式热-光伏复合发电系统的发电量预测

仇中柱, 倪行睿, 朱群志, 叶勇健, 张涛, 蔡靖雍

太阳能学报 ›› 2024, Vol. 45 ›› Issue (9) : 428-434.

PDF(1390 KB)
欢迎访问《太阳能学报》官方网站,今天是
PDF(1390 KB)
太阳能学报 ›› 2024, Vol. 45 ›› Issue (9) : 428-434. DOI: 10.19912/j.0254-0096.tynxb.2023-0748

基于分光谱利用的新型塔式热-光伏复合发电系统的发电量预测

  • 仇中柱1, 倪行睿1, 朱群志1, 叶勇健2, 张涛1, 蔡靖雍1
作者信息 +

POWER GENERATION PREDICTION OF NEW TOWER TYPE THERMAL PHOTOVOLTAIC COMPOSITE POWER GENERATION SYSTEM BASED ON SPECTRAL BEAM SPLITTING UTILIZATION

  • Qiu Zhongzhu1, Ni Xingrui1, Zhu Qunzhi1, Ye Yongjian2, Zhang Tao1, Cai Jingyong1
Author information +
文章历史 +

摘要

提出一种利用分光谱技术的塔式热-光伏复合发电系统,介绍系统的组成和结构。采用MUUEN算法设计镜场排列,在AM1.5D太阳光谱作为入射光时对提出的系统进行光学和热力学分析。采用拉萨典型气象年的太阳辐射数据,预测常规光伏发电、常规光热发电和本系统的全年发电量并进行对比。结果表明,在选定的气候条件下塔式分光谱热-光伏复合系统的综合发电量高于其他两种系统。

Abstract

This article proposes a tower-type thermal-photovoltaic composite power generation system using spectral beam splitting technology, and introduces the composition and structure of the system.The mirror field arrangement was designed using the MUUEN algorithm, and the proposed system was analyzed optically and thermodynamically at the AM1.5D solar spectrum as the incident irradiance flux density.Solar radiation data for a typical meteorological year were used to forecast and compare the full-year power generation of photovoltaic power, solar thermal power and this system.The results show that the combined power production of the tower-type sub-spectral thermal-photovoltaic composite system is higher than the other two systems under the selected climatic conditions.

关键词

太阳能 / 太阳能发电 / 聚光太阳能 / 光谱分频技术 / 热力学分析

Key words

solar energy / solar power generation / concentrated solar power / beam splitting technology / thermodynamic analysis

引用本文

导出引用
仇中柱, 倪行睿, 朱群志, 叶勇健, 张涛, 蔡靖雍. 基于分光谱利用的新型塔式热-光伏复合发电系统的发电量预测[J]. 太阳能学报. 2024, 45(9): 428-434 https://doi.org/10.19912/j.0254-0096.tynxb.2023-0748
Qiu Zhongzhu, Ni Xingrui, Zhu Qunzhi, Ye Yongjian, Zhang Tao, Cai Jingyong. POWER GENERATION PREDICTION OF NEW TOWER TYPE THERMAL PHOTOVOLTAIC COMPOSITE POWER GENERATION SYSTEM BASED ON SPECTRAL BEAM SPLITTING UTILIZATION[J]. Acta Energiae Solaris Sinica. 2024, 45(9): 428-434 https://doi.org/10.19912/j.0254-0096.tynxb.2023-0748
中图分类号: TK519   

参考文献

[1] 姚玉璧, 郑绍忠, 杨扬, 等. 中国太阳能资源评估及其利用效率研究进展与展望[J]. 太阳能学报, 2022, 43(10): 524-535.
YAO Y B, ZHENG S Z, YANG Y, et al.Progress and prospects on solar energy resource evaluation and utilization efficiency in China[J]. Acta energiae solaris sinica, 2022, 43(10): 524-535.
[2] O'NEILL S. Perovskite pushes solar cells to record efficiency[J]. Engineering, 2021, 7(8): 1037-1040.
[3] JU X, WANG Z F, FLAMANT G, et al.Numerical analysis and optimization of a spectrum splitting concentration photovoltaic-thermoelectric hybrid system[J]. Solar energy, 2012, 86(6): 1941-1954.
[4] 张放. 铸造类单晶硅中位错的控制方法及机理研究[D]. 杭州: 浙江大学, 2019.
ZHANG F.Modulation and related mechanism of dislocations in cast quasi-single crystalline silicon[D]. Hangzhou: Zhejiang University, 2019.
[5] 田野. 铸造准单晶硅制备及位错消除技术的研究[D]. 徐州: 中国矿业大学, 2019.
TIAN Y.Fabrication of cast quasi-crystal silicon and dislocation elimination technology[D]. Xuzhou: China University of Mining and Technology, 2019.
[6] 陈晓彬, 韩新月, 孙耀, 等. 分频型光伏光热系统中丙二醇基Ag/CoSO4纳米流体的性能研究[J]. 太阳能学报, 2021, 42(5): 168-173.
CHEN X B, HAN X Y, SUN Y, et al.Study on propylene glycol based Ag/CoSO4 nanofluid splitter for spectrum-splitting PV/T system[J]. Acta energiae solaris sinica, 2021, 42(5): 168-173.
[7] MAHMOUDINEZHAD S, COTFAS D T, COTFAS P A, et al.Experimental investigation on spectrum beam splitting photovoltaic-thermoelectric generator under moderate solar concentrations[J]. Energy, 2022, 238: 121988.
[8] WIDYOLAR B, JIANG L, WINSTON R.Spectral beam splitting in hybrid PV/T parabolic trough systems for power generation[J]. Applied energy, 2018, 209: 236-250.
[9] JIANG S L, HU P, MO S P, et al.Optical modeling for a two-stage parabolic trough concentrating photovoltaic/thermal system using spectral beam splitting technology[J]. Solar energy materials and solar cells, 2010, 94(10): 1686-1696.
[10] LIU Y, HU P, ZHANG Q, et al.Thermodynamic and optical analysis for a CPV/T hybrid system with beam splitter and fully tracked linear Fresnel reflector concentrator utilizing sloped panels[J]. Solar energy, 2014, 103: 191-199.
[11] SEGAL A, EPSTEIN M, YOGEV A.Hybrid concentrated photovoltaic and thermal power conversion at different spectral bands[J]. Solar energy, 2004, 76(5): 591-601.
[12] 仇中柱, 朱群志, 张云鹏. 一种分光式太阳能光伏光热利用装置: CN115473481A[P].2022-12-13.
QIU Z Z, ZHU Q Z, ZHANG Y P. A spectral beam splitting solar photovoltaic photothermal utiliation device: CN115473481A[P].2022-12-13.
[13] WANG G, YAO Y B, CHEN Z S, et al.Thermodynamic and optical analyses of a hybrid solar CPV/T system with high solar concentrating uniformity based on spectral beam splitting technology[J]. Energy, 2019, 166: 256-266.
[14] SIALA F M F, ELAYEB M E. Mathematical formulation of a graphical method for a no-blocking heliostat field layout[J]. Renewable energy, 2001, 23(1): 77-92.
[15] COLLADO F J, TURÉGANO J A. Calculation of the annual thermal energy supplied by a defined heliostat field[J]. Solar energy, 1989, 42(2): 149-165.
[16] BARBERENA J, LARRAYOZ A M, SÁNCHEZ M, et al. State-of-the-art of heliostat field layout algorithms and their comparison[J]. Energy procedia, 2016, 93: 31-38.
[17] 王伯通. 太阳能分频光伏/聚光光热系统研究[D]. 吉林: 东北电力大学, 2022.
WANG B T.Study on solar spectral beam splitting photovoltaic/concentrated solar thermal system[D]. Jilin: Northeast Electric Power University, 2022.
[18] 李红民, 王欢, 李乐乐, 等. 槽式太阳能热发电系统设计法向直射辐照度优化研究[J]. 太阳能学报, 2021, 42(10): 140-145.
LI H M, WANG H, LI L L, et al.Research on optimization of design direct normal irradiance for trough solar thermal power system[J]. Acta energiae solaris sinica, 2021, 42(10): 140-145.
[19] STINE W, GEYER M.Power from the sun[EB/OL]. PowerFromTheSun.net.http://www.powerfromthesun.net/index.html.
[20] 姚利森. 塔式光热电站发电量估算[J]. 上海节能, 2019(12): 974-979.
YAO L S.Estimation of power generation of solar power tower plants[J]. Shanghai energy conservation, 2019(12): 974-979.
[21] G173-03, Standard tables for reference solar spectral irradiances: direct normal and hemispherical on 37 tilted surface[S].
[22] GREEN M A, EMERY K, HISHIKAWA Y, et al.Solar cell efficiency tables (version 42)[J]. Progress in photovoltaics: research and applications, 2013, 21(5): 827-837.
[23] GREEN M A, DUNLOP E D, HOHL-EBINGER J, et al.Solar cell efficiency tables (version 58)[J]. Progress in photovoltaics: research and applications, 2021, 29(7): 657-667.

基金

上海市Ⅳ类高峰学科上海非碳基能源转换与利用研究院(Z2022-107)

PDF(1390 KB)

Accesses

Citation

Detail

段落导航
相关文章

/