针对太阳能-空气源热泵复合供暖系统运行环境复杂多变,模糊控制论域无法实时调整这一问题,提出一种变论域模糊控制方法,用于复合供暖系统的温度控制。以实际温度与目标温度的差值为输入变量,以变频水泵频率为输出变量,引入伸缩因子来改变论域,并以粒子群优化算法对伸缩因子的参数进行取优。Matlab/Simulink仿真对比试验表明,与传统的模糊控制相比,该方法的控制精度提高18.39%,系统能耗减少9.22%。
Abstract
Aiming at the problem that the operating environment of the solar-air source heat pump composite heating system is complex and changeable, and the fuzzy control domain cannot be adjusted in real time, a fuzzy control method of variable domain is proposed for the temperature control of the composite heating system. Taking the difference between the actual temperature and the target temperature as the input variable, and the frequency of the variable frequency pump as the output variable, the expansion factor is introduced to change the discourse domain, and the parameters of the expansion factor are optimized by the particle swarm optimization algorithm. The Matlab/Simulink simulation comparison test shows that compared with the traditional fuzzy control, the control accuracy of the method is improved by 18.39%, and the system energy consumption is reduced by 9.22%.
关键词
太阳能供暖 /
模糊控制 /
温度控制 /
粒子群算法
Key words
solar heating /
fuzzy control /
temperature control /
particle swarm optimization
{{custom_sec.title}}
{{custom_sec.title}}
{{custom_sec.content}}
参考文献
[1] CHANG C, ZHU N, YANG K, et al.Data and analytics for heating energy consumption of residential buildings: The case of a severe cold climate region of China[J]. Energy and buildings, 2018, 172: 104-115.
[2] 国家能源局. 国家能源局发布2022年全国电力工业统计数据[EB/OL].http://www.nea.gov.cn/2023-01/18/c_1310691509.htm.
National Energy Administration. National Energy Administration released statistical data of national electric power industry in2022[EB/OL]. http://www.nea.gov.cn/2023-01/18/c_1310691509.htm.
[3] 牙韩司. 新能源时代企业能源管理标准化的应用和探讨[J]. 太阳能学报, 2022, 43(2): 506.
YA H S.Application and discussion of enterprise energy management standardization in new energy era[J]. Acta energiae solaris sinica, 2022, 43(2): 506.
[4] YUAN T H, ZHU N, SHI Y F, et al.Sample data selection method for improving the prediction accuracy of the heating energy consumption[J]. Energy and buildings, 2018, 158: 234-243.
[5] DIAO L Q, SUN Y J, CHEN Z J, et al.Modeling energy consumption in residential buildings: a bottom-up analysis based on occupant behavior pattern clustering and stochastic simulation[J]. Energy and buildings, 2017, 147: 47-66.
[6] 汪露露, 吴红斌, 周亦尧. 基于供能可靠性的综合能源系统优化配置[J]. 太阳能学报, 2021, 42(12): 395-400.
WANG L L, WU H B, ZHOU Y Y.Optimal configuration of integrated energy system based on energy supply reliability[J]. Acta energiae solaris sinica, 2021, 42(12): 395-400.
[7] LI X L, LIU S Y, WANG Y L.Optimal control study of solar-air source heat pump coupled heating system operation[J]. Journal of physics: conference series, 2023, 2474(1): 012015.
[8] WU J R, SHEN M, FENG J X.The application of a solar-air-source heat pump dual-supply heating system in a high-cold area in China[J]. Processes, 2023, 11(3): 737.
[9] ZHANG T H, WANG F X, GAO Y, et al.Optimization of a solar-air source heat pump system in the high-cold and high-altitude area of China[J]. Energy, 2023, 268: 126653.
[10] LU M L, ZHANG C, ZHANG D Y, et al.Operational optimization of district heating system based on an integrated model in TRNSYS[J]. Energy and buildings, 2021, 230: 110538.
[11] 殷雅冰. 暖通空调系统PID控制及节能降耗方案[J]. 中阿科技论坛, 2020(7): 91-95.
YIN Y B.Research on PID control of HVAC system and energy saving and consumption reduction[J]. China-Arab states science and technology forum, 2020(7): 91-95.
[12] BI H Q, ZHOU Y L, LIU J, et al.Load forecast and fuzzy control of the air-conditioning systems at the subway stations[J]. Journal of building engineering, 2022, 49: 104029.
[13] TALEBI A, HATAMI A.Online fuzzy control of HVAC systems considering demand response and users' comfort[J]. Energy sources, part B: economics, planning, and policy, 2020, 15(7/8/9): 403-422.
[14] GOUDA M M, DANAHER S, UNDERWOOD C P.Quasi-adaptive fuzzy heating control of solar buildings[J]. Building and environment, 2006, 41(12): 1881-1891.
[15] JIANG D H, CUI H S.Predictive control of floor radiant heating system via fuzzy logic and particle swarm optimization for reducing room temperature fluctuations[J]. Energy sources, part A: recovery, utilization, and environmental effects, 2020: 1-13.
[16] WU T, TANG Y R, FEI D D, et al.Researches on temperature control strategy of SMHS-type 3D printing based on variable universe fuzzy control[J]. Journal of advanced computational intelligence and intelligent informatics, 2017, 21(1): 166-171.
[17] 勾倩倩, 许树学, 刘海波. 制冷空调设备控制方法的研究进展[J]. 制冷与空调, 2023, 23(9): 57-64.
GOU Q Q, XU S X, LIU H B.Research Progress on control methods of Refrigeration and Air conditioning equipment[J]. Refrigeration and Air Conditioning, 2023, 23(9): 57-64.
[18] 杨光兴. 变论域模糊控制器的研究[D]. 保定: 华北电力大学, 2009.
YANG G X.Research of fuzzy controller with variable universe[D]. Baoding: North China Electric Power University, 2009.
[19] 朱振经. 太阳能-空气源热泵复合供暖系统热负荷预测及控制策略研究[D]. 包头: 内蒙古科技大学, 2022.
ZHU Z J.Study on thermal load prediction and control strategy of solar-air source combined heating system[D]. Baotou: Inner Mongolia University of Science and Technology, 2022.
基金
国家自然科学基金(52065054); 内蒙古自治区直属高校基本科研业务费项目(2024QNJS012; 2024YXXS020; 2023RCTD011)