一种基于航拍红外图像的光伏热斑故障分类检测方法

张妍, 裴兴豪, 李冰, 张雄

太阳能学报 ›› 2024, Vol. 45 ›› Issue (9) : 353-359.

PDF(2369 KB)
欢迎访问《太阳能学报》官方网站,今天是
PDF(2369 KB)
太阳能学报 ›› 2024, Vol. 45 ›› Issue (9) : 353-359. DOI: 10.19912/j.0254-0096.tynxb.2023-0762

一种基于航拍红外图像的光伏热斑故障分类检测方法

  • 张妍1,2, 裴兴豪1,2, 李冰1, 张雄1
作者信息 +

CLASSIFICATION DETECTION METHOD OF PHOTOVOLTAIC THERMAL SPOT IN AERIAL INFRARED IMAGE

  • Zhang Yan1,2, Pei Xinghao1,2, Li Bing1, Zhang Xiong1
Author information +
文章历史 +

摘要

针对航拍光伏红外图像热斑检测方法中小目标特征易丢失问题,提出一种光伏热斑故障分类检测方法。首先将多头自注意力机制结合CSPNet结构进行改进,提出CSPMAT网络,再将其引入New CSP-Darknet网络,构建CSPMAT-Darknet模型,实现了光伏组件热斑定位及分类。实验结果表明:该模型在小目标检测任务中的性能显著提升,且在目标尺寸差异较大的故障分类检测任务中,均值平均精度达到82.92%,提高了13.97个百分点,具有良好的检测精度和泛化能力。

Abstract

A photovoltaic thermal spot fault classification detection method is proposed to resolve the issue of small target feature loss in the thermal spot detection method for aerial photovoltaic infrared images. Firstly, the multi-head self-attention mechanism is integrated with the CSPNet structure for improvement, resulting in the proposed CSPMAT network. Subsequently, this network is introduced into the New CSP-Darknet architecture, leading to the construction of the CSPMAT-Darknet model, achieving both localization and classification of photovoltaic component thermal spots. Experimental results demonstrate that the model enhances performance in small target detection tasks significantly. Moreover, in fault classification detection tasks with substantial target size variations, the achieved mean average precision (mAP) reaches 82.92%, an increase of 13.97 percentage points, thereby showcasing commendable detection accuracy and generalization capability.

关键词

红外热图像 / 图像识别 / 特征提取 / CSPNet / 多头自注意力机制 / 分类检测

Key words

infrared imaging / image recognition / feature extraction / CSPNet / bullish self-attention mechanism / classification detection

引用本文

导出引用
张妍, 裴兴豪, 李冰, 张雄. 一种基于航拍红外图像的光伏热斑故障分类检测方法[J]. 太阳能学报. 2024, 45(9): 353-359 https://doi.org/10.19912/j.0254-0096.tynxb.2023-0762
Zhang Yan, Pei Xinghao, Li Bing, Zhang Xiong. CLASSIFICATION DETECTION METHOD OF PHOTOVOLTAIC THERMAL SPOT IN AERIAL INFRARED IMAGE[J]. Acta Energiae Solaris Sinica. 2024, 45(9): 353-359 https://doi.org/10.19912/j.0254-0096.tynxb.2023-0762
中图分类号: TP18    TM615   

参考文献

[1] 王道累, 姚勇, 张世恒, 等. 基于红外热图像的光伏组件热斑深度学习检测方法[J]. 中国电机工程学报, 2023, 43(24): 9608-9616.
WANG D L, YAO Y, ZHANG S H, et al.Deep learning detection method of photovoltaic module hot spot based on infrared thermal image[J]. Proceedings of the CSEE, 2023, 43(24): 9608-9616.
[2] 魏卓航, 林培杰, 陈志聪, 等. 改进YOLOv5的光伏组件热斑及遮挡物检测[J]. 福州大学学报(自然科学版), 2023, 51(1): 33-40.
WEI Z H, LIN P J, CHEN Z C, et al.Detection of photovoltaic module hot spots and shelters on improved YOLOv5[J]. Journal of Fuzhou University (natural science edition), 2023, 51(1): 33-40.
[3] 蒋琳, 苏建徽, 李欣, 等. 基于可见光和红外热图像融合的光伏阵列热斑检测方法[J]. 太阳能学报, 2022, 43(1): 393-397.
JIANG L, SU J H, LI X, et al.Hot spot detection of photovoltaic array based on fusion of visible and infrared thermal images[J]. Acta energiae solaris sinica, 2022, 43(1): 393-397.
[4] 蔡洁聪, 吕洪坤, 朱凌云, 等. 光伏发电站热斑检测技术综述[J]. 电源技术, 2021, 45(5): 683-685.
CAI J C, LYU H K, ZHU L Y, et al.Review of hot spot detection technology in photovoltaic power station[J]. Chinese journal of power sources, 2021, 45(5): 683-685.
[5] 陈功, 蔡磊, 张琳, 等. 光伏热斑模拟建模及热成像分析[J]. 电子测量与仪器学报, 2021, 35(8): 191-197.
CHEN G, CAI L, ZHANG L, et al.Photovoltaic hotspot simulation modeling and thermal imaging analysis[J]. Journal of electronic measurement and instrumentation, 2021, 35(8): 191-197.
[6] 管宽岐, 蔺雨桐, 赵雨薇, 等. 基于深度学习的航拍光伏板红外图像热斑检测方法研究[J]. 电子测量技术, 2022, 45(22): 75-81.
GUAN K Q, LIN Y T, ZHAO Y W, et al.Photovoltaic hot spot detection of aerial infrared image based on deep learning[J]. Electronic measurement technology, 2022, 45(22): 75-81.
[7] 王道累, 李超, 李明山, 等. 基于深度卷积神经网络的光伏组件热斑检测[J]. 太阳能学报, 2022, 43(1): 412-417.
WANG D L, LI C, LI M S, et al.Solar photovoltaic modules hot spot detection based on deep convolutional neural networks[J]. Acta energiae solaris sinica, 2022, 43(1): 412-417.
[8] 孙海蓉, 李号. 基于深度迁移学习的小样本光伏热斑识别方法[J]. 太阳能学报, 2022, 43(1): 406-411.
SUN H R, LI H.Photovoltaic hot spot identification method for small sample based on deep transfer learning[J]. Acta energiae solaris sinica, 2022, 43(1): 406-411.
[9] 蒋琳, 苏建徽, 施永, 等. 基于红外热图像处理的光伏阵列热斑检测方法[J]. 太阳能学报, 2020, 41(8): 180-184.
JIANG L, SU J H, SHI Y, et al.Hot spots detection of operating PV arrays through IR thermal image[J]. Acta energiae solaris sinica, 2020, 41(8): 180-184.
[10] 柳扬, 陈美珍, 徐胜彬, 等. 基于热成像与灰度转换技术的光伏阵列缺陷检测方法[J]. 电子测量技术, 2021, 44(11): 96-102.
LIU Y, CHEN M Z, XU S B, et al.Defect detection method for photovoltaic arrays based on thermal imaging and gray conversion technology[J]. Electronic measurement technology, 2021, 44(11): 96-102.
[11] WANG C Y, MARK LIAO H Y, WU Y H, et al. CSPNet: a new backbone that can enhance learning capability of CNN[C]//2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops (CVPRW). Seattle, WA, USA, 2020: 1571-1580.
[12] HUANG G, LIU Z, VAN DER MAATEN L, et al. Densely connected convolutional networks[C]//2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). Honolulu, HI, USA, 2017: 2261-2269.
[13] HE K M, ZHANG X Y, REN S Q, et al.Deep residual learning for image recognition[C]//2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). Las Vegas, NV, USA, 2016: 770-778.
[14] JU C, GUAN C T.Tensor-CSPNet: a novel geometric deep learning framework for motor imagery classification[J]. IEEE transactions on neural networks and learning systems, 2023, 34(12): 10955-10969.
[15] THANGO B A, JORDAAN J A, NNACHI A F.On the impact of solar photovoltaic generation on the thermal ageing of transformers[C]//2020 6th IEEE International Energy Conference (ENERGYCon). Gammarth, Tunisia, 2020: 356-359.
[16] LI Z T, CHEN G K, ZHANG T X.A CNN-transformer hybrid approach for crop classification using multitemporal multisensor images[J]. IEEE journal of selected topics in applied earth observations and remote sensing, 2020, 13: 847-858.
[17] XIE S N, GIRSHICK R, DOLLÁR P, et al. Aggregated residual transformations for deep neural networks[C]//2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). Honolulu, HI, USA, 2017: 5987-5995.
[18] SZEGEDY C, LIU W, JIA Y Q, et al.Going deeper with convolutions[C]//2015 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). Boston, MA, USA, 2015: 1-9.
[19] KRIZHEVSKY A, SUTSKEVER I, HINTON G.ImageNet classification with deep convolutional neural Networks[J]. Advances in neural information processing systems, 2012, 25(2): 84-90.
[20] SANDLER M, HOWARD A, ZHU M, et al.MobileNetV2: inverted residuals and linear bottlenecks[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. Salt Lake City, UT, USA, 2018: 4510-4520.

基金

国家自然科学基金(U21A20486); 河北省省级科技计划(22567643H)

PDF(2369 KB)

Accesses

Citation

Detail

段落导航
相关文章

/