铜铝复合金属氧化物储热材料导热系数低,该文通过复合导热相氧化锌提高导热系数,对其导热提升机理和改善后的储热特性进行研究。结果表明:铜铝锌复合金属氧化物Cu9Al1Zn3固体介质连续性提高/孔隙率降低/导热系数提高71%;同时其氧化还原基本可逆,还原/氧化反应时间从Cu9Al1的1.45 min/4.48 min降到1.16 min/2.82 min,循环稳定性高,在200次循环内能够保持98.3%的还原特性和94.2%的氧化特性;成型模块储热试验中Cu9Al1Zn3模块还原/氧化反应时间从Cu9Al1的30.4 min/24.5 min降到20.5 min/22.9 min,反应速率加快,反应时间缩短,能够更快完成储放热响应。
Abstract
Aiming at the low thermal conductivity of copper-aluminum composite metal oxides materials, this article improves the thermal conductivity of copper-based heat storage materials by composite thermal conductivity phase zinc oxide, explores the mechanism of thermal conductivity lifting and the reaction characteristics. The results demonstrate that the solid media continuity of the copper-aluminum-zinc composite metal oxide Cu9Al1Zn3 is improved, leading to a reduction in porosity and a significant 71% increase in thermal conductivity. Moreover, the oxidation-reduction reaction is found to be reversible, with the reduction/oxidation reaction time decreasing from 1.45 min/4.48 min of Cu9Al1 to 1.16 min/2.82 min. The cycle performance is stable, the reduction/oxidation reaction rates of Cu9Al1Zn3 remain 98.32%/ 94.26% after 200 high-temperature cycles. Additionally, the heat storage density of Cu9Al1Zn3 can reach 1073.24 kJ/kg. The reduction/oxidation reaction time of Cu9Al1Zn3 module decreases from 30.4 min/24.5 min of Cu9Al1 to 20.5 min/22.9 min in the module heat storage test, uniquely accelerating the reaction rate and shortening reaction time, which can effectively respond to thermal storage and release more quickly and provide guidance for subsequent practical applications.
关键词
复合材料 /
热化学 /
热能储存 /
热分析 /
金属氧化物
Key words
composite materials /
thermochemistry /
thermal energy storage /
thermal analysis /
metal oxide
{{custom_sec.title}}
{{custom_sec.title}}
{{custom_sec.content}}
参考文献
[1] SUNKU PRASAD J, MUTHUKUMAR P, DESAI F, et al.A critical review of high-temperature reversible thermochemical energy storage systems[J]. Applied energy, 2019, 254: 113733.
[2] STRÖHLE S, HASELBACHER A, JOVANOVIC Z R, et al. The effect of the gas-solid contacting pattern in a high-temperature thermochemical energy storage on the performance of a concentrated solar power plant[J]. Energy & environmental science, 2016, 9(4): 1375-1389.
[3] WU S K, ZHOU C, DOROODCHI E, et al.A review on high-temperature thermochemical energy storage based on metal oxides redox cycle[J]. Energy conversion and management, 2018, 168: 421-453.
[4] MAO Q J.Recent developments in geometrical configurations of thermal energy storage for concentrating solar power plant[J]. Renewable and sustainable energy reviews, 2016, 59: 320-327.
[5] CARRILLO A J, CHINCHILLA L E, IGLESIAS-JUEZ A, et al.Determining the role of Fe-doping on promoting the thermochemical energy storage performance of (Mn1-xFex)3 O4 spinels[J]. Small methods, 2021, 5(10): e2100550.
[6] CARRILLO A J, SASTRE D, SERRANO D P, et al.Revisiting the BaO2/BaO redox cycle for solar thermochemical energy storage[J]. Physical chemistry chemical physics: PCCP, 2016, 18(11): 8039-8048.
[7] AGRAFIOTIS C, ROEB M, SCHMÜCKER M, et al. Exploitation of thermochemical cycles based on solid oxide redox systems for thermochemical storage of solar heat part 1: testing of cobalt oxide-based powders[J]. Solar energy, 2014, 102: 189-211.
[8] HASELI P, JAFARIAN M, NATHAN G J.High temperature solar thermochemical process for production of stored energy and oxygen based on CuO/Cu2O redox reactions[J]. Solar energy, 2017, 153: 1-10.
[9] LUCIO B, ROMERO M, GONZÁLEZ-AGUILAR J. Analysis of solid-state reaction in the performance of doped calcium manganites for thermal storage[J]. Solid state ionics, 2019, 338: 47-57.
[10] ANDRÉ L, ABANADES S, FLAMANT G.Screening of thermochemical systems based on solid-gas reversible reactions for high temperature solar thermal energy storage[J]. Renewable and sustainable energy reviews, 2016, 64: 703-715.
[11] BLOCK T, SCHMÜCKER M. Metal oxides for thermochemical energy storage: a comparison of several metal oxide systems[J]. Solar energy, 2016, 126: 195-207.
[12] SILAKHORI M, JAFARIAN M, ARJOMANDI M, et al.Thermogravimetric analysis of Cu, Mn, Co, and Pb oxides for thermochemical energy storage[J]. Journal of energy storage, 2019, 23: 138-147.
[13] DEUTSCH M, HORVATH F, KNOLL C, et al.High-temperature energy storage: kinetic investigations of the CuO/Cu2O reaction cycle[J]. Energy & fuels, 2017, 31: 2324-2334.
[14] ALONSO E, PÉREZ-RÁBAGO C, LICURGO J, et al. First experimental studies of solar redox reactions of copper oxides for thermochemical energy storage[J]. Solar energy, 2015, 115: 297-305.
[15] GIGANTINO M, BRUNSER S S, STEINFELD A.High-temperature thermochemical heat storage via the CuO/Cu2O redox cycle: from material synthesis to packed-bed reactor engineering and cyclic operation[J]. Energy & fuels, 2020, 34(12): 16772-16782.
[16] ZHOU J H, XIANG D, ZHU P W, et al.ZrO2-doped copper oxide long-life redox material for thermochemical energy storage[J]. ACS sustainable chemistry & engineering, 2022, 11(1): 47-57.
[17] XIANG D, GU C D, XU H R, et al.Al-modified CuO/Cu2O for high-temperature thermochemical energy storage: from reaction performance to modification mechanism[J]. ACS applied materials & interfaces, 2021, 13(48): 57274-57284.
[18] DENG J L, GU C D, XU H R, et al.MgCr2O4-modified CuO/Cu2O for high-temperature thermochemical energy storage with high redox activity and sintering resistance[J]. ACS applied materials & interfaces, 2022, 14(38): 43151-43162.
[19] DENG J L, GU C D, XU H R, et al.Self-assembly CuO surface decorated with NiAl2O4 for high-temperature thermochemical energy storage: excellent performance and strong interaction mechanism[J]. Journal of energy storage, 2023, 59: 106370.
[20] 彭记康. 基于三元金属氧化物的热化学储热反应特性和温度调控机制[D]. 杭州: 浙江大学, 2021.
PENG J K.The Reaction characterstics and temperautre regulation mechanism of ternary metal oxides for thermochemical energy storage[D]. Hangzhou: Zhejiang University, 2021.
[21] 袁鹏, 彭记康, 肖刚. 钴铜锂复合金属氧化物热化学储热温度调控特性研究[J]. 太阳能学报, 2023, 44(1): 114-118.
YUAN P, PENG J K, XIAO G.Thermochemical temperature regulation study of cobalt-copper-lithium composite metal oxides[J]. Acta energiae solaris sinica, 2023, 44(1): 114-118.
[22] 肖刚, 彭记康, 袁鹏, 等. 适合于太阳能热发电的锰铁锂复合金属氧化物储热特性与热化学反应机理[J]. 太阳能学报, 2022, 43(11): 119-124.
XIAO G, PENG J K, YUAN P, et al.Characteristics and thermochemical reaction mechanism of manganese-iron-lithium composite metal oxide suitable for solar thermal power generation[J]. Acta energiae solaris sinica, 2022, 43(11): 119-124.
基金
国网浙江省电力有限公司科技项目“面向新型电力系统的热化学型电热储-放-用技术研究及应用”资助项目(B311DS230006)