STUDY ON WAKE CHARACTERISTICS OF VERTICALLY STAGGERED WIND TURBINES GROUP
Zhang Lidong1,2, Feng Zhengcong1, Tian Wenxin3, Wan Jiawei3, Zhao Xiuyong3, Li Qinwei4
Author information+
1. School of Energy and Power Engineering, Northeast Electric Power University, Jilin 132012, China; 2. Oil Shale Comprehensive Utilization Engineering Research Center of the Ministry of Education, Northeast Electric Power University, Jilin 132012, China; 3. National Environmental Protection Research Institute for Electric Power Co., Ltd., State Environmental Protection Key Laboratory of Atmospheric Physical Modeling and Pollution Control, Nanjing 210031, China; 4. Power China Jilin Electric Power Survey and Design Institute Co., Ltd., Changchun 130021, China
The wind turbine wake has an important impact on the output power of wind farms. In order to study the impact of adding small wind turbines on the overall output of wind farms, OpenFOAM was used to simulate the combination of two large wind turbines and three small wind turbines arranged horizontally between two large wind turbines, and four operating conditions with different distances between small wind turbines and large wind turbines downstream and one of the operating conditions with different heights of small wind turbines as the study object. The layout adds three small wind turbines between two large wind turbines, and each row of small wind turbines has a different distance from the large wind turbines downstream. The results show that when the small wind turbines are set at a height of 37 m, the power of the downstream large wind turbine increases gradually with the increase of the distance from the upstream large wind turbine. When the distance of the small wind turbine from the downstream large wind turbine is fixed, increasing the hub height of the small wind turbine makes the power of the downstream large wind turbine decrease.
Zhang Lidong, Feng Zhengcong, Tian Wenxin, Wan Jiawei, Zhao Xiuyong, Li Qinwei.
STUDY ON WAKE CHARACTERISTICS OF VERTICALLY STAGGERED WIND TURBINES GROUP[J]. Acta Energiae Solaris Sinica. 2024, 45(9): 517-524 https://doi.org/10.19912/j.0254-0096.tynxb.2023-0771
中图分类号:
TM315
{{custom_sec.title}}
{{custom_sec.title}}
{{custom_sec.content}}
参考文献
[1] ZHAO X Y, HU T Y, ZHANG L D, et al.Experimental study on the characteristics of wind turbine wake field considering yaw conditions[J]. Energy science & engineering, 2021, 9: 2333-2341. [2] 杨建, 王力, 宋冬然, 等. 基于孤立森林与稀疏高斯过程回归的风电机组偏航角零点漂移诊断方法[J]. 中国电机工程学报, 2021, 41(18): 6198-6212. YANG J, WANG L, SONG D R, et al.Diagnostic method of zero-point shifting of wind turbine yaw angle based on isolated forest and sparse Gaussian process regression[J]. Proceedings of the CSEE, 2021, 41(18): 6198-6212. [3] 郑一丹, 刘惠文, 郑源, 等. 错列布局风电场尾流演变实验研究[J]. 中国电机工程学报, 2023, 43(4): 1463-1471. ZHENG Y D, LIU H W, ZHENG Y, et al.Experimental study on the wakes evolution of a staggered wind farm[J]. Proceedings of the CSEE, 2023, 43(4): 1463-1471. [4] 杨瑞, 许世海, 王小丽, 等. 错列风力机尾流的实验研究[J]. 兰州理工大学学报, 2016, 42(3): 67-70. YANG R, XU S H, WANG X L, et al.Experimental research of wakes behind staggered wind turbines[J]. Journal of Lanzhou University of Technology, 2016, 42(3): 67-70. [5] 魏书荣, 李正茂, 符杨, 等. 基于改进Lissaman模型风电场内增设小风机的可行性分析[J]. 电力系统自动化, 2017, 41(12): 231-237, 247. WEI S R, LI Z M, FU Y, et al.Feasibility analysis on incorporating small wind turbines in wind farm based on improved Lissaman model[J]. Automation of electric power systems, 2017, 41(12): 231-237, 247. [6] 胡丹梅, 郑筱凯, 张建平. 风力机不同排列方式下尾迹数值模拟[J]. 可再生能源, 2015, 33(5): 684-692. HU D M, ZHENG X K, ZHANG J P.Wake numerical simulation of wind turbine in different arrangement[J]. Renewable energy resources, 2015, 33(5): 684-692. [7] LI X Y, QIU Y N, FENG Y H, et al.Wind turbine power prediction considering wake effects with dual laser beam LiDAR measured yaw misalignment[J]. Applied energy, 2021, 299: 117308. [8] DAI X, XU D, ZHANG M Q, et al.A three-dimensional dynamic mode decomposition analysis of wind farm flow aerodynamics[J]. Renewable energy, 2022, 191: 608-624. [9] 缪维跑, 李春, 阳君. 偏航尾迹特性及对下游风力机的影响研究[J]. 太阳能学报, 2018, 39(9): 2462-2469. MIAO W P, LI C, YANG J.Characteristics of a yawed wake and its influence on downstream wind turbine[J]. Acta energiae solaris sinica, 2018, 39(9): 2462-2469. [10] 薛飞飞, 许昌, 黄海琴, 等. 基于格子玻尔兹曼方法的风力机尾流特性研究[J]. 中国电机工程学报, 2022, 42(12): 4352-4363. XUE F F, XU C, HUANG H Q, et al.Study on wake characteristics of wind turbine based on Lattice Boltzmann method[J]. Proceedings of the CSEE, 2022, 42(12): 4352-4363. [11] 许昌, 黄海琴, 施晨, 等. 基于LBM-LES方法的典型复杂地形作用下风力机尾流数值模拟[J]. 中国电机工程学报, 2020, 40(13): 4236-4244. XU C, HUANG H Q, SHI C, et al.Numerical simulation of wind turbine wakes in typical complex terrains based on LBM-LES method[J]. Proceedings of the CSEE, 2020, 40(13): 4236-4244. [12] LUO K, YUAN R Y, DONG X Q, et al.Large-eddy simulation and experimental study on the turbulent wake flow characteristics of a two-bladed wind turbine[J]. Science China technological sciences, 2017, 60(12): 1861-1869. [13] 张建, 左浩然, 元国凯, 等. 考虑尾流效应的风力机组输出功率和疲劳性能模拟[J]. 空气动力学学报, 2022, 40(4): 210-219. ZHANG J, ZUO H R, YUAN G K, et al.The effect of wake flows on the output power and fatigue behavior of wind turbines[J]. Acta aerodynamica sinica, 2022, 40(4): 210-219. [14] 凌子焱, 赵振宙, 刘一格, 等. 风力机三维卷吸尾流模型的研究与验证[J]. 中国电机工程学报, 2023, 43(17): 6639-6646. LING Z Y, ZHAO Z Z, LIU Y G, et al.Study and validation of three-dimensional entrainment wake model for wind-turbine[J]. Proceedings of the CSEE, 2023, 43(17): 6639-6646. [15] 王同光, 田琳琳, 钟伟, 等. 风能利用中的空气动力学研究进展Ⅱ:入流和尾流特性[J]. 空气动力学学报, 2022, 40(4): 22-50. WANG T G, TIAN L L, ZHONG W, et al.Aerodynamic research progress in wind energy Ⅱ: Inflow and wake characteristics[J]. Acta aerodynamica sinica, 2022, 40(4): 22-50. [16] VASEL-BE-HAGH A, ARCHER C L. Wind farm hub height optimization[J]. Applied energy, 2017, 195: 905-921. [17] CHEN Y, LI H, JIN K, et al.Investigating the possibility of using different hub height wind turbines in a wind farm[J]. International journal of sustainable energy, 2017, 36: 142-150. [18] 杨从新, 何攀, 张旭耀, 等. 轮毂高度差或上游风力机偏航角对风力机总功率输出的影响[J]. 农业工程学报, 2018, 34(22): 155-161. YANG C X, HE P, ZHANG X Y, et al.Influence of hub height difference or upstream wind turbine yaw angle on wind turbines total power output[J]. Transactions of the Chinese Society of Agricultural Engineering, 2018, 34(22): 155-161. [19] CHURCHFIELD M, L S. NWTC design codes (SOWFA)[EB/OL].2013. http://wind.nrel.gov/designcodes/simulayors/SOWFA. [20] OpenFOAM, the open source CFD toolbox[EB/OL].2013. http://www.openfoam.com/. [21] 刘惠文, 郑源, 杨春霞, 等. 剪切来流条件下风力机尾流场特性实验研究[J]. 中国电机工程学报, 2018, 38(23): 6987-6993. LIU H W, ZHENG Y, YANG C X, et al.An experimental investigation on the characteristics of wind turbine wake under incoming shear flow[J]. Proceedings of the CSEE, 2018, 38(23): 6987-6993. [22] 李雄威, 徐家豪, 李庚达, 等. 一种新修正的风电机组尾流分析模型[J]. 太阳能学报, 2022, 43(8): 260-265. LI X W, XU J H, LI G D, et al.A new modified analytical model for wind-turbine wakes[J]. Acta energiae solaris sinica, 2022, 43(8): 260-265. [23] HAMLAOUI M N, SMAILI A, DOBREV I, et al.Numerical and experimental investigations of HAWT near wake predictions using particle image velocimetry and actuator disk method[J]. Energy, 2022, 238: 121660.