基于等离子体气化的医疗垃圾制备氢气/甲醇系能分析

李镓睿, 陈衡, 赵淑媛, 潘佩媛, 吴礼宁

太阳能学报 ›› 2024, Vol. 45 ›› Issue (9) : 28-40.

PDF(1631 KB)
欢迎访问《太阳能学报》官方网站,今天是
PDF(1631 KB)
太阳能学报 ›› 2024, Vol. 45 ›› Issue (9) : 28-40. DOI: 10.19912/j.0254-0096.tynxb.2023-0775

基于等离子体气化的医疗垃圾制备氢气/甲醇系能分析

  • 李镓睿, 陈衡, 赵淑媛, 潘佩媛, 吴礼宁
作者信息 +

PERFORMANCE ASSESSMENT OF HYDROGEN/METHANOL PRODUCTION SYSTEM BASED ON PLASMA GASIFICATION OF MEDICAL WASTE

  • Li Jiarui, Chen Heng, Zhao Shuyuan, Pan Peiyuan, Wu Lining
Author information +
文章历史 +

摘要

为实现医疗垃圾无害化、减量化和资源化处理,提高医疗垃圾的能质利用效率,提出基于等离子体气化的医疗垃圾制备氢气/甲醇系统,其中产氢系统(方案A)将医疗垃圾转化为氢气;产氢气和甲醇双燃料系统(方案B)将医疗垃圾转化为氢气和甲醇。所有方案均采用30 t/d等离子体气化炉,并从热力学和经济学角度评估和比较综合效益。结果表明,方案A和方案B的流程效率分别达到70.07%和67.96%,但由于废气的循环利用,方案B的系统?效率比方案A高出2.19个百分点。相较于方案B,方案A的动态投资回报期更短(为4.40 a),净现值相对更高(为25556.62万元)。

Abstract

To achieve the harmless, reduced, and resourceful treatment of medical waste while enhancing energy and material utilization efficiency, a hydrogen/methanol production system based on plasma medical waste gasification technology is proposed to produce hydrogen/methanol. Among them, the hydrogen production system (scheme A) converts medical waste into hydrogen;The dual fuel system of hydrogen and methanol production (scheme B) converts medical waste into hydrogen and methanol. All schemes use a 30 t/d plasma gasifier and are evaluated and compared from a thermodynamic and economic point of view. The results show that the process efficiencies of scheme A and scheme B reach 70.07% and 67.96%, respectively. Due to the recycling of waste gas, the system breakdown efficiency of scheme B is 2.19 percentage points higher than that of scheme A. Compared with scheme B, scheme A has a shorter dynamic payback period of 4.40 years and a relatively higher net present value of 255.57 million yuan.

关键词

医疗垃圾 / 等离子体气化 / 制备氢气 / 制备氢气和甲醇 / 性能分析

Key words

medical waste / plasma gasification / hydrogen production / hydrogen and methanol fuels / performance analysis

引用本文

导出引用
李镓睿, 陈衡, 赵淑媛, 潘佩媛, 吴礼宁. 基于等离子体气化的医疗垃圾制备氢气/甲醇系能分析[J]. 太阳能学报. 2024, 45(9): 28-40 https://doi.org/10.19912/j.0254-0096.tynxb.2023-0775
Li Jiarui, Chen Heng, Zhao Shuyuan, Pan Peiyuan, Wu Lining. PERFORMANCE ASSESSMENT OF HYDROGEN/METHANOL PRODUCTION SYSTEM BASED ON PLASMA GASIFICATION OF MEDICAL WASTE[J]. Acta Energiae Solaris Sinica. 2024, 45(9): 28-40 https://doi.org/10.19912/j.0254-0096.tynxb.2023-0775
中图分类号: TK91   

参考文献

[1] PURNOMO C W, KURNIAWAN W, AZIZ M.Technological review on thermochemical conversion of COVID-19-related medical wastes[J]. Resources, conservation and recycling, 2021, 167: 105429.
[2] 孙成伟, 沈洁, 任雪梅, 等. 等离子气化技术用于固体废物处理的研究进展[J]. 物理学报, 2021, 70(9): 72-85.
SUN C W, SHEN J, REN X M, et al.Research progress of plasma gasification technology for solid waste treatment[J]. Acta physica sinica, 2021, 70(9): 72-85.
[3] HARRIS K, GRIM R G, HUANG Z, et al.A comparative techno-economic analysis of renewable methanol synthesis from biomass and CO2: opportunities and barriers to commercialization[J]. Applied energy, 2021, 303: 117637.
[4] LI J J, CHENG W J.Comparative life cycle energy consumption, carbon emissions and economic costs of hydrogen production from coke oven gas and coal gasification[J]. International journal of hydrogen energy, 2020, 45(51): 27979-27993.
[5] 满奕. 低碳排放的煤和焦炉气联供化工过程新工艺[D]. 广州: 华南理工大学, 2016.
MAN Y.Integrated process of coal and coke-oven gas to chemicals with low carbon emission[D]. Guangzhou: South China University of Technology, 2016.
[6] 祁华清. 有机固体废弃物等离子气化制氢工艺过程研究[D]. 青岛: 青岛科技大学, 2022.
QI H Q.Study on the process of hydrogen production by plasma gasification of organic solid waste[D]. Qingdao: Qingdao University of Science & Technology, 2022.
[7] ERDOGAN A A, YILMAZOGLU M Z.Plasma gasification of the medical waste[J]. International journal of hydrogen energy, 2021, 46(57): 29108-29125.
[8] SUBRAMANYAM V, GORODETSKY A.Municipal wastes and other potential fuels for use in IGCC systems[C]//Integrated Gasification Combined Cycle (IGCC) Technologies. Amsterdam: Elsevier, 2017: 181-219.
[9] MINUTILLO M, PERNA A, DI BONA D.Modelling and performance analysis of an integrated plasma gasification combined cycle (IPGCC) power plant[J]. Energy conversion and management, 2009, 50(11): 2837-2842.
[10] SANZ R, CALLES J A, ALIQUE D, et al.Hydrogen production in a Pore-Plated Pd-membrane reactor: experimental analysis and model validation for the Water Gas Shift reaction[J]. International journal of hydrogen energy, 2015, 40(8): 3472-3484.
[11] GUTIÉRREZ ORTIZ F J, SERRERA A, GALERA S, et al. Methanol synthesis from syngas obtained by supercritical water reforming of glycerol[J]. Fuel, 2013, 105: 739-751.
[12] PUIG-GAMERO M, ARGUDO-SANTAMARIA J, VALVERDE J L, et al.Three integrated process simulation using Aspen plus®: pine gasification, syngas cleaning and methanol synthesis[J]. Energy conversion and management, 2018, 177: 416-427.
[13] ADIL A, RAO L.Methanol production from biomass: Analysis and optimization[J]. Materials today: proceedings, 2022, 57: 1770-1775.
[14] JANAJREH I, RAZA S S, VALMUNDSSON A S.Plasma gasification process: modeling, simulation and comparison with conventional air gasification[J]. Energy conversion and management, 2013, 65: 801-809.
[15] BASILE A, CURCIO S, BAGNATO G, et al.Water gas shift reaction in membrane reactors: theoretical investigation by artificial neural networks model and experimental validation[J]. International journal of hydrogen energy, 2015, 40(17): 5897-5906.
[16] LIU M, WANG S, YAN J J.Operation scheduling of a coal-fired CHP station integrated with power-to-heat devices with detail CHP unit models by particle swarm optimization algorithm[J]. Energy, 2021, 214: 119022.
[17] 曲世琳, 彭莉, 吴晓琼, 等. 基于能量分析和分析的太阳能热泵系统优化研究[J]. 太阳能学报, 2015, 36(10): 2384-2389.
QU S L, PENG L, WU X Q, et al.Optimization research of solar-assisted heat pump system based on energy analysis and exergy analysis[J]. Acta energiae solaris sinica, 2015, 36(10): 2384-2389.
[18] 张晓明, 吴玉庭. 槽式太阳能热发电系统能量、?与?泛分析[J]. 太阳能学报, 2021, 42(12): 9-16.
ZHANG X M, WU Y T.Energy, exergy and universal exergy analysis of parabolic trough solar thermal power system[J]. Acta energiae solaris sinica, 2021, 42(12): 9-16.
[19] AHMED U.Techno-economic analysis of dual methanol and hydrogen production using energy mix systems with CO2 capture[J]. Energy conversion and management, 2021, 228: 113663.
[20] MALLICK R, PRABU V.4-E analyses of plasma gasification integrated chemical looping reforming system for power and hydrogen co-generation using Bakelite and acrylonitrile butadiene styrene based plastic waste feedstocks[J]. Energy conversion and management, 2022, 271: 116320.
[21] ZHANG R, SHIMADA K, NI M, et al.Low or No subsidy? Proposing a regional power grid based wind power feed-in tariff benchmark price mechanism in China[J]. Energy policy, 2020, 146: 111758.
[22] PENG W K, CHEN H, LIU J, et al.Techno-economic assessment of a conceptual waste-to-energy CHP system combining plasma gasification, SOFC, gas turbine and supercritical CO2 cycle[J]. Energy conversion and management, 2021, 245: 114622.
[23] 通知公告_天津市发展和改革委员会网站_政务信息[EB/OL]. [2022-04-29].http://fzgg.tj.gov.cn/xxfb/tzggx/202012/t20201219_5067902.html.
Notice Tianjin municipal development and reform commission government information[EB/OL]. [2022-04-29].http://fzgg.tj.gov.cn/xxfb/tzggx/202012/t20201219_5067902.html.
[24] DANTHUREBANDARA M, VAN PASSEL S, VANDERREYDT I, et al.Environmental and economic performance of plasma gasification in enhanced landfill mining[J]. Waste management, 2015, 45: 458-467.
[25] ZHANG Z H, DELCROIX B, REZAZGUI O, et al.Simulation and techno-economic assessment of bio-methanol production from pine biomass, biochar and pyrolysis oil[J]. Sustainable energy technologies and assessments, 2021, 44: 101002.
[26] PRADHAN P, GADKARI P, MAHAJANI S M, et al.A conceptual framework and techno-economic analysis of a pelletization-gasification based bioenergy system[J]. Applied energy, 2019, 249: 1-13.
[27] XIN T T, XU C, LIU Y H, et al.Thermodynamic analysis and economic evaluation of a novel coal-based zero emission polygeneration system using solar gasification[J]. Applied thermal engineering, 2022, 201: 117814.
[28] PAULINO R F S, ESSIPTCHOUK A M, SILVEIRA J L. The use of syngas from biomedical waste plasma gasification systems for electricity production in internal combustion: thermodynamic and economic issues[J]. Energy, 2020, 199: 117419.
[29] ZANG G Y, JIA J X, TEJASVI S, et al.Techno-economic comparative analysis of Biomass Integrated Gasification Combined Cycles with and without CO2 capture[J]. International journal of greenhouse gas control, 2018, 78: 73-84.
[30] 郭苏, 何意, 阿依努尔·库尔班, 等. 基于多储能技术经济性比较的可再生能源发电系统多目标容量优化[J]. 太阳能学报, 2022, 43(10): 424-431.
GUO S, HE Y, AYNUR K, et al.Multi-objective capacity optimization of renewable energy power system considering techno-economic comparisons of various energy storage technologies[J]. Acta energiae solaris sinica, 2022, 43(10): 424-431.

基金

国家自然科学基金(52276006; 51821004)

PDF(1631 KB)

Accesses

Citation

Detail

段落导航
相关文章

/