NWP辅助复合神经网络预测误差修正的风储系统日前上报策略

李翠萍, 张冰, 李军徽, 朱辉, 朱星旭, 何俐

太阳能学报 ›› 2024, Vol. 45 ›› Issue (10) : 86-96.

PDF(1314 KB)
欢迎访问《太阳能学报》官方网站,今天是
PDF(1314 KB)
太阳能学报 ›› 2024, Vol. 45 ›› Issue (10) : 86-96. DOI: 10.19912/j.0254-0096.tynxb.2023-0777

NWP辅助复合神经网络预测误差修正的风储系统日前上报策略

  • 李翠萍1, 张冰1, 李军徽1, 朱辉1, 朱星旭1, 何俐2
作者信息 +

DAY-AHEAD REPORTING STRATEGY OF WIND STORAGE SYSTEM BASED ON NWP ASSISTED COMPOSITE NEURAL NETWORK PREDICTION ERROR CORRECTION

  • Li Cuiping1, Zhang Bing1, Li Junhui1, Zhu Hui1, Zhu Xingxu1, He Li2
Author information +
文章历史 +

摘要

新能源电站出力存在强波动性导致巨额偏差考核支出,因此基于数值天气预报(NWP)和复合深度学习算法,提出一种计及误差预测修正的风储系统日前上报策略。首先通过改进的组合数据预处理算法对数据进行清洗以降低后续预测难度,建立基于分段式收敛粒子群算法(PCPSO)参数寻优的长短期记忆网络(LSTM)对分量分别进行预测,重构预测结果获取原预测曲线。其次考虑预测误差及NWP信息导入多输入反向传播神经网络(MIBP)获取误差预测曲线,使用非参数核密度函数修订该预测误差曲线后,以储能跟踪误差最小和储能全局调控能力最高为目的模拟储能运行获取最佳储能动作曲线,且叠加原预测曲线和最佳储能动作曲线获取最终日前上报曲线。最后通过仿真分析验证了上报策略的正确性与可行性。

Abstract

The output of new energy power stations has strong fluctuations that lead to huge deviation assessment expenditures. Therefore, based on numerical weather prediction (NWP) and composite deep learning algorithms, a day-ahead reporting strategy for wind-storage combined system that takes into account error prediction corrections is proposed. Firstly, the improved combined data preprocessing algorithm is used to clean the data to reduce the difficulty of subsequent predictions, and a long short-term memory network prediction network (LSTM) based on piecewise convergent particle swarm optimization (PCPSO) parameter optimization is established to predict the components respectively. Reconstruct the forecast results to obtain the original forecast curve. Secondly, the prediction error curve is obtained by considering the prediction error and the NWP information import multi-input backpropagation neural network (MIBP). After revising the prediction error curve using the non-parametric kernel density function, the optimal energy storage action curve is obtained by simulating the energy storage operation for the purpose of minimizing the energy storage tracking error and maximizing the global control ability of energy storage. Superimpose the original prediction curve and the optimal energy storage action curve to obtain the final day-ahead reporting curve. Finally, the correctness and feasibility of the reporting strategy are verified by simulation analysis.

关键词

风电 / 深度神经网络 / 粒子群优化 / 储能 / 日前上报策略 / 预测误差特征 / NWP信息

Key words

wind power / deep neural network / particle swarm optimization / energy storage / day-ahead reporting strategy / prediction error characteristics / NWP information

引用本文

导出引用
李翠萍, 张冰, 李军徽, 朱辉, 朱星旭, 何俐. NWP辅助复合神经网络预测误差修正的风储系统日前上报策略[J]. 太阳能学报. 2024, 45(10): 86-96 https://doi.org/10.19912/j.0254-0096.tynxb.2023-0777
Li Cuiping, Zhang Bing, Li Junhui, Zhu Hui, Zhu Xingxu, He Li. DAY-AHEAD REPORTING STRATEGY OF WIND STORAGE SYSTEM BASED ON NWP ASSISTED COMPOSITE NEURAL NETWORK PREDICTION ERROR CORRECTION[J]. Acta Energiae Solaris Sinica. 2024, 45(10): 86-96 https://doi.org/10.19912/j.0254-0096.tynxb.2023-0777
中图分类号: TM614   

参考文献

[1] 国家能源局.国家能源局2023年一季度新闻发布会文字实录[EB/OL].[2023-02-28].
National Energy Administration. Transcript of the national energy administration’s Q12023 press conference[EB/OL]. [2023-02-28].
[2] EZZAT A A, JUN M, DING Y.Spatio-temporal asymmetry of local wind fields and its impact on short-term wind forecasting[J]. IEEE transactions on sustainable energy, 2018, 9(3): 1437-1447.
[3] 李军徽, 岳鹏程, 李翠萍, 等. 提高风能利用水平的风电场群储能系统控制策略[J]. 电力自动化设备, 2021, 41(10): 162-169.
LI J H, YUE P C, LI C P, et al.Control strategy of energy storage system in wind farm group to improve wind energy utilization level[J]. Electric power automation equipment, 2021, 41(10): 162-169.
[4] 孙荣富, 张涛, 和青, 等. 风电功率预测关键技术及应用综述[J]. 高电压技术, 2021, 47(4): 1129-1143.
SUN R F, ZHANG T, HE Q, et al.Review on key technologies and applications in wind power forecasting[J]. High voltage engineering, 2021, 47(4): 1129-1143.
[5] 赖昌伟, 黎静华, 陈博, 等. 光伏发电出力预测技术研究综述[J]. 电工技术学报, 2019, 34(6): 1201-1217.
LAI C W, LI J H, CHEN B, et al.Review of photovoltaic power output prediction technology[J]. Transactions of China Electrotechnical Society, 2019, 34(6): 1201-1217.
[6] 李艳梅, 任恒君, 张致远, 等. 考虑储能系统调度与风电消纳的峰谷分时电价优化模型研究[J]. 电网技术, 2022, 46(11): 4141-4149.
LI Y M, REN H J, ZHANG Z Y, et al.Optimization model of peak-valley time-of-use electricity prices considering energy storage system dispatching and wind power consumption[J]. Power system technology, 2022, 46(11): 4141-4149.
[7] 杨茂, 于欣楠. 考虑风电场功率爬坡的超短期组合预测[J]. 东北电力大学学报, 2022, 42(1): 63-70.
YANG M, YU X N.An ultra-short term combined prediction considering wind farm power climbing[J]. Journal of northeast electric power university, 2022, 42(1): 63-70.
[8] 王维高, 魏云冰, 滕旭东. 基于VMD-SSA-LSSVM的短期风电预测[J]. 太阳能学报, 2023, 44(3): 204-211.
WANG W G, WEI Y B, TENG X D.Short-term wind power forecasting based on VMD-SSA-LSSVM[J]. Acta energiae solaris sinica, 2023, 44(3): 204-211.
[9] ZHANG J H, YAN J, INFIELD D, et al.Short-term forecasting and uncertainty analysis of wind turbine power based on long short-term memory network and Gaussian mixture model[J]. Applied energy, 2019, 241: 229-244.
[10] CHAI J, WANG Y R, WANG S Y, et al.A decomposition-integration model with dynamic fuzzy reconstruction for crude oil price prediction and the implications for sustainable development[J]. Journal of cleaner production, 2019, 229: 775-786.
[11] 张宇帆, 艾芊, 林琳, 等. 基于深度长短时记忆网络的区域级超短期负荷预测方法[J]. 电网技术, 2019, 43(6): 1884-1892.
ZHANG Y F, AI Q, LIN L, et al.A very short-term load forecasting method based on deep LSTM RNN at zone level[J]. Power system technology, 2019, 43(6): 1884-1892.
[12] 王振浩, 王翀, 成龙, 等. 基于集合经验模态分解和深度学习的光伏功率组合预测[J]. 高电压技术, 2022, 48(10): 4133-4142.
WANG Z H, WANG C, CHENG L, et al.Photovoltaic power combined prediction based on ensemble empirical mode decomposition and deep learning[J]. High voltage engineering, 2022, 48(10): 4133-4142.
[13] 张雲钦, 程起泽, 蒋文杰, 等. 基于EMD-PCA-LSTM的光伏功率预测模型[J]. 太阳能学报, 2021, 42(9): 62-69.
ZHANG Y Q, CHENG Q Z, JIANG W J, et al.Photovoltaic power prediction model based on EMD-PCA-LSTM[J]. Acta energiae solaris sinica, 2021, 42(9): 62-69.
[14] 邵春雨, 窦会光, 张海东, 等. 递归式变分模态分解在电力变压器声音信号降噪中的应用[J]. 东北电力大学学报, 2022, 42(5): 90-96.
SHAO C Y, DOU H G, ZHANG H D, et al.Recursive variational modal decomposition for noise reduction of power transformer sound signals[J]. Journal of Northeast Electric Power University, 2022, 42(5): 90-96.
[15] 谢丽蓉, 王斌, 包洪印, 等. 基于EEMD-WOA-LSSVM的超短期风电功率预测[J]. 太阳能学报, 2021, 42(7): 290-296.
XIE L R, WANG B, BAO H Y, et al.Super-short-term wind power forecasting based on EEMD-WOA-LSSVM[J]. Acta energiae solaris sinica, 2021, 42(7): 290-296.
[16] WANG H Z, LI G Q, WANG G B, et al.Deep learning based ensemble approach for probabilistic wind power forecasting[J]. Applied energy, 2017, 188: 56-70.
[17] 王晓东, 鞠邦国, 刘颖明, 等. 基于QR-NFGLSTM与核密度估计的风电功率概率预测[J]. 太阳能学报, 2022, 43(2): 479-485.
WANG X D, JU B G, LIU Y M, et al.Probability prediction of wind power based on QR-NFGLSTM and kernel density estimation[J]. Acta energiae solaris sinica, 2022, 43(2): 479-485.
[18] ZHANG G, LIU H C, ZHANG J B, et al.Wind power prediction based on variational mode decomposition multi-frequency combinations[J]. Journal of modern power systems and clean energy, 2019, 7: 281-288.
[19] 李大中, 李颖宇. 基于深度学习与误差修正的超短期风电功率预测[J]. 太阳能学报, 2021, 42(12): 200-205.
LI D Z, LI Y Y.Ultra-short term wind power prediction based on deep learning and error correction[J]. Acta energiae solaris sinica, 2021, 42(12): 200-205.
[20] 张峰, 张鹏, 梁军. 考虑风电功率不确定性的风电场出力计划上报策略[J]. 电力自动化设备, 2019, 39(11): 34-40.
ZHANG F, ZHANG P, LIANG J.Wind farm generation schedule strategy considering wind power uncertainty[J]. Electric power automation equipment, 2019, 39(11): 34-40.
[21] 王晓东, 苗宜之, 刘颖明, 等. 基于多分解策略和误差校正的超短期风电功率混合智能预测算法[J]. 太阳能学报, 2021, 42(6): 312-320.
WANG X D, MIAO Y Z, LIU Y M, et al.Hybrid intelligent prediction algorithm of ultra-short-term wind power based on multi-decomposition strategy and error correction[J]. Acta energiae solaris sinica, 2021, 42(6): 312-320.
[22] 吴浩天, 柯德平, 刘念璋, 等. 面向两个细则考核的风-储场站日前-日内两阶段功率优化上报策略[J]. 电工技术学报, 2024, 39(1): 135-153.
WU H T, KE D P, LIU N Z, et al.Two-stage day-ahead and intra-day optimized power reporting strategy of wind-storage stations for the ‘two detailed rules’ assessment[J]. Transactions of China Electrotechnical Society, 2024, 39(1): 135-153.
[23] FENG C, CUI M J, HODGE B M, et al.A data-driven multi-model methodology with deep feature selection for short-term wind forecasting[J]. Applied energy, 2017, 190: 1245-1257.
[24] WANG K F, YE L, YANG S H, et al.A hierarchical dispatch strategy of hybrid energy storage system in Internet data center with model predictive control[J]. Applied energy, 2023, 331: 120414.
[25] 李军徽, 尤宏飞, 李翠萍, 等. 基于模型预测控制的风光储黑启动功率协调策略[J]. 电网技术, 2020, 44(10): 3700-3708.
LI J H, YOU H F, LI C P, et al.Power coordination strategy based on model predictive control for black start with PV-wind-battery system[J]. Power system technology, 2020, 44(10): 3700-3708.
[26] 李焱, 贾雅君, 李磊, 等. 基于随机森林算法的短期电力负荷预测[J]. 电力系统保护与控制, 2020, 48(21): 117-124.
LI Y, JIA Y J, LI L, et al.Short term power load forecasting based on a stochastic forest algorithm[J]. Power system protection and control, 2020, 48(21): 117-124.

基金

吉林省自然科学基金联合基金(YDZJ202101ZYTS152)

PDF(1314 KB)

Accesses

Citation

Detail

段落导航
相关文章

/