耦合光热储能的小麦秸秆超临界水气化制氢系统的热力学研究

薛强坤, 许宏鹏, 贾明, 孙煜皓, 吴少华

太阳能学报 ›› 2024, Vol. 45 ›› Issue (9) : 170-178.

PDF(1389 KB)
欢迎访问《太阳能学报》官方网站,今天是
PDF(1389 KB)
太阳能学报 ›› 2024, Vol. 45 ›› Issue (9) : 170-178. DOI: 10.19912/j.0254-0096.tynxb.2023-0778

耦合光热储能的小麦秸秆超临界水气化制氢系统的热力学研究

  • 薛强坤1, 许宏鹏2, 贾明1, 孙煜皓3, 吴少华1
作者信息 +

THERMODYNAMIC STUDY OF HYDROGEN PRODUCTION SYSTEM BY SUPERCRITICAL WATER GASIFICATION OF WHEAT STRAW COUPLED WITH PHOTOTHERMAL ENERGY STROAGE

  • Xue Qiangkun1, Xu Hongpeng2, Jia Ming1, Sun Yuhao3, Wu Shaohua1
Author information +
文章历史 +

摘要

提出一种基于太阳能驱动的小麦秸秆超临界水气化系统模型,并结合熔融盐储能系统,有效克服了太阳能的间歇性问题,为生物质制氢的碳中和路径提供了新思路。热力学分析发现热解温度和能量输入是该系统制氢产率的主要影响因素,在较高热解温度(700 ℃)和低能量输入(215.14 kW)的条件下氢气产率达到最大;通过耦合熔融盐储能,该系统实现了全天不间断高效运行,其能量效率和?效率分别达到36.3%和36%以上。

Abstract

In this paper, a system model of solar driven supercritical water gasification of wheat straw coupled with molten salt energy storage system is presented, which effectively overcomes the intermittency problem of solar energy, thus providing a new carbon neutral path for hydrogen production via biomass gasification. Thermodynamic analysis suggest that pyrolysis temperature and energy input are the main factors affecting the hydrogen yield of the system. The hydrogen yield reached the maximum under the conditions of high pyrolysis temperature (700 ℃) and low energy input (215.14 kW). Owing to molten salt energy storage, the system could operate continuously throughout the whole day efficiently, with the energy efficiency and exergy efficiency reaching 36.3% and 36%, respectively.

关键词

生物质 / 气化 / 太阳能 / 超临界水 / 光热储能

Key words

biomass / gasification / solar energy / supercritical water / photothermal energy storage

引用本文

导出引用
薛强坤, 许宏鹏, 贾明, 孙煜皓, 吴少华. 耦合光热储能的小麦秸秆超临界水气化制氢系统的热力学研究[J]. 太阳能学报. 2024, 45(9): 170-178 https://doi.org/10.19912/j.0254-0096.tynxb.2023-0778
Xue Qiangkun, Xu Hongpeng, Jia Ming, Sun Yuhao, Wu Shaohua. THERMODYNAMIC STUDY OF HYDROGEN PRODUCTION SYSTEM BY SUPERCRITICAL WATER GASIFICATION OF WHEAT STRAW COUPLED WITH PHOTOTHERMAL ENERGY STROAGE[J]. Acta Energiae Solaris Sinica. 2024, 45(9): 170-178 https://doi.org/10.19912/j.0254-0096.tynxb.2023-0778
中图分类号: TK519   

参考文献

[1] HEIDARI H, AKBARI M, SOUHANKAR A, et al.Review of global energy trends towards 2040 and recommendations for Iran oil and gas sector[J]. International journal of environmental science and technology, 2022, 19(8): 8007-8018.
[2] CARLOS R M, KHANG D B.Characterization of biomass energy projects in Southeast Asia[J]. Biomass and bioenergy, 2008, 32(6): 525-532.
[3] JANAJREH I, ADEYEMI I, RAZA S S, et al.A review of recent developments and future prospects in gasification systems and their modeling[J]. Renewable and sustainable energy reviews, 2021, 138: 110505.
[4] LEONG Y K, CHEN W H, LEE D J, et al.Supercritical water gasification (SCWG) as a potential tool for the valorization of phycoremediation-derived waste algal biomass for biofuel generation[J]. Journal of hazardous materials, 2021, 418: 126278.
[5] 吴海峰, 刘佳维, 刘启斌. 太阳能驱动生物质气化多联产系统研究[J]. 太阳能学报, 2022, 43(1): 465-470.
WU H F, LIU J W, LIU Q B.Investigation of polygeneration system with solar driven biomass gasification[J]. Acta energiae solaris sinica, 2022, 43(1): 465-470.
[6] ZHANG X F, LI H Q, LIU L F, et al.Analysis of a feasible trigeneration system taking solar energy and biomass as co-feeds[J]. Energy conversion and management, 2016, 122: 74-84.
[7] 廖波, 郭烈锦, 吕友军, 等. 多碟太阳能聚热与生物质超临界水气化耦合制氢[J]. 太阳能学报, 2011, 32(5): 750-755.
LIAO B, GUO L J, LYU Y J, et al.Hydrogen production coupling system of multi-dishes concentrating solar thermal and biomass gasification in supercritical water[J]. Acta energiae solaris sinica, 2011, 32(5): 750-755.
[8] SHAN S Q, JIA S Q, WU H J, et al.New solar-biomass assisted thermophotovoltaic system and parametrical analysis[J]. Green energy and resources, 2023, 1(2): 100019.
[9] RAHBARI A, VENKATARAMAN M B, PYE J.Energy and exergy analysis of concentrated solar supercritical water gasification of algal biomass[J]. Applied energy, 2018, 228: 1669-1682.
[10] ONIGBAJUMO A, TAGHIPOUR A, WILL G, et al.Effects of process-thermal configuration on energy, exergy, and thermo-economic performance of solar driven supercritical water gasification[J]. Energy conversion and management, 2022, 251: 115002.
[11] LIU S K, YANG Y, YU L J, et al.Thermodynamic and environmental analysis of solar-driven supercritical water gasification of algae for ammonia synthesis and power production[J]. Energy conversion and management, 2021, 243: 114409.
[12] WANG X, CHEN H S, XU Y J, et al.Advances and prospects in thermal energy storage: a critical review[J]. Chinese science bulletin, 2017, 62(15): 1602-1610.
[13] HINKLEY J T, MCNAUGHTON R K, PYE J, et al.The challenges and opportunities for integration of solar syngas production with liquid fuel synthesis[C]//AIP Conference Proceedings. Cape Town, South Africa, 2016.
[14] RUYA P M, PURWADI R, LIM S S.Supercritical water gasification of sewage sludge for power generation-thermodynamic study on auto-thermal operation using Aspen Plus[J]. Energy conversion and management, 2020, 206: 112458.
[15] 郑志行, 张家元, 李俊宇, 等. 下吸式固定床的生物质O2/CO2分段气化流程模拟[J]. 太阳能学报, 2022, 43(6): 239-245.
ZHENG Z H, ZHANG J Y, LI J Y, et al.Process simulation of biomass O2/CO2 staged gasification in downdraft fixed bed[J]. Acta energiae solaris sinica, 2022, 43(6): 239-245.
[16] 兰维娟, 李惟毅, 陈冠益, 等. 基于Gibbs自由能最小化原理的生物质催化气化模拟[J]. 太阳能学报, 2014, 35(12): 2530-2534.
LAN W J, LI W Y, CHEN G Y, et al.Modeling of biomass catalyzing gasification based on minimization of Gibbs free energy[J]. Acta energiae solaris sinica, 2014, 35(12): 2530-2534.
[17] WANG X L, YANG Z L, LIU X, et al.The composition characteristics of different crop straw types and their multivariate analysis and comparison[J]. Waste management, 2020, 110: 87-97.
[18] 付鹏, 王志峰, 余强, 等. 塔式太阳能热发电站热力性能综合评价[J]. 太阳能学报, 2021, 42(11): 86-97.
FU P, WANG Z F, YU Q, et al.Comprehensive thermal performance evaluation of tower solar power generation station[J]. Acta energiae solaris sinica, 2021, 42(11): 86-97.
[19] CHEN Q M, WANG Y, ZHANG J H, et al.The knowledge mapping of concentrating solar power development based on literature analysis technology[J]. Energies, 2020, 13(8): 1988.
[20] 刘子建. 太阳能单罐熔盐相变储能系统储热与力学性能数值模拟研究[D]. 吉林: 东北电力大学, 2022.
LIU Z J.Numerical simulation study on heat storage and mechanical behaviors of solar energy single-tank molten-salt-based phase change energy storage system[D]. Jilin: Northeast Electricity Power University, 2022.
[21] CHEN J W, LIU Y, WU X M, et al.Thermodynamic, environmental analysis and comprehensive evaluation of supercritical water gasification of biomass fermentation residue[J]. Journal of cleaner production, 2022, 361: 132126.
[22] VAJA I, GAMBAROTTA A.Internal combustion engine (ICE) bottoming with organic Rankine cycles (ORCs)[J]. Energy, 2010, 35(2): 1084-1093.
[23] CHEN J W, XU W W, ZHANG F, et al.Thermodynamic and environmental analysis of integrated supercritical water gasification of coal for power and hydrogen production[J]. Energy conversion and management, 2019, 198: 111927.
[24] GONG Q, SHI H, CHAI Y, et al.Molten chloride salt technology for next-generation CSP plants: Compatibility of Fe-based alloys with purified molten MgCl2-KCl-NaCl salt at 700 ℃[J]. Applied energy, 2022, 324: 119708.
[25] VILLADA C, DING W J, BONK A, et al.Engineering molten MgCl2-KCl-NaCl salt for high-temperature thermal energy storage: review on salt properties and corrosion control strategies[J]. Solar energy materials and solar cells, 2021, 232: 111344.
[26] WANG R, LI H R, CAI W J, et al.Alternative pathway to phase down coal power and achieve negative emission in China[J]. Environmental science & technology, 2022, 56(22): 16082-16093.
[27] MERICHE I E, BEGHIDJA A, BOUMEDJIREK M.Energetic and exergetic analysis of solar gas turbine power plant in South Algeria[C]//2014 5th International Renewable Energy Congress (IREC). Hammamet, Tunisia, 2014: 1-6.
[28] DEMIR M E, DINCER I.Development and assessment of a solar driven trigeneration system with storage for electricity, ammonia and fresh water production[J]. Energy conversion and management, 2021, 245: 114585.
[29] SEGAL A, EPSTEIN M.Comparative performances of ‘tower-top' and ‘tower-reflector' central solar receivers[J]. Solar energy, 1999, 65(4): 207-226.
[30] CAO C Q, XU L C, HE Y Y, et al.High-efficiency gasification of wheat straw black liquor in supercritical water at high temperatures for hydrogen production[J]. Energy & fuels, 2017, 31(4): 3970-3978.
[31] MOGHADDAM E M, GOEL A, SIEDLECKI M, et al.Supercritical water gasification of wet biomass residues from farming and food production practices: lab-scale experiments and comparison of different modelling approaches[J]. Sustainable energy & fuels, 2021, 5(5): 1521-1537.
[32] MACRÌ D, CATIZZONE E, MOLINO A, et al.Supercritical water gasification of biomass and agro-food residues: energy assessment from modelling approach[J]. Renewable energy, 2020, 150: 624-636.

基金

中央高校基本科研业务费资助(DUT21RC(3)043); 河北省自然科学基金(E2021203041)

PDF(1389 KB)

Accesses

Citation

Detail

段落导航
相关文章

/