基于焓法的凝固/熔化模型,在考虑自然对流的情况下,建立管壳式相变换热器的熔化模型,并研究管翅片布局和热边界条件对相变材料瞬态熔化行为的影响机理。针对均匀的管翅片布局和恒定壁温热边界条件,设计一种具有方形波动热源的偏心结构,并对两者之间的强化传热规律进行比较和分析。结果表明,偏心布局可使相同传热面积中热传递盲区的熔化得到改善,而方形波动热源可增强前熔化阶段中央区域的自然对流;能量存储参数对比表明,相比原始结构,偏心布局结构或方形波动热源的熔化时间分别缩短12.5%和6.25%,而同时优化热源和结构的熔化时间缩短31.25%。方形波动热源和偏心结构能显著提高换热器的熔化速率。
Abstract
Based on the solidification/melting model of the enthalpy method, a melting model of a shell-and-tube type phase change heat exchanger is developed with consideration of natural convection, and the mechanism of the influence of tube fin layout and thermal boundary conditions on the transient melting behavior of the phase change material is investigated. We design an eccentric structure with a fluctuating heat source for a uniform tube fin layout and constant wall temperature thermal boundary conditions and compare and analyze the enhanced heat transfer law between them. The results show that the eccentric layout improves melting in the heat transfer blind area with the same heat transfer area, while the fluctuating heat source enhances natural convection in the central region of the pre-melting stage. The comparison of energy storage parameters shows that the eccentric layout structure or the fluctuating heat source reduces the melting time by 12.5% and 6.25%, respectively, compared to the original structure, and both the optimized heat source and structure reduce the melting time by 31.25%. The fluctuating heat source and eccentric structure can significantly improve the heat exchanger's melting rate.
关键词
相变材料 /
传热性能 /
管壳式 /
传热盲区 /
自然对流 /
数值模拟 /
强化传热
Key words
phase change materials /
heat transfer performance /
shell and tube heat exchangers /
heat transfer blind zones /
natural convection /
numerical simulation /
heat transfer enhancement
{{custom_sec.title}}
{{custom_sec.title}}
{{custom_sec.content}}
参考文献
[1] 罗凯, 叶伟梁, 王艳, 等. 太阳能生活热水系统相变储能研究进展[J]. 太阳能学报, 2022, 43(5):220-229.
LUO K, YE W L, WANG Y, et al.Research progress of phase change energy storage in solar domestic hot water system[J]. Acta energiae solaris sinica, 2022, 43(5):220-229.
[2] 陈佳慧, 康鑫. 冬季太阳能相变蓄热通风墙热工性能的数值模拟[J]. 太阳能学报, 2023, 44(4): 522-530.
CHEN J H, KANG X.Numerical simulations on thermal performances of passive solar ventilated walls with latent heat storage in winter[J]. Acta energiae solaris sinica, 2023, 44(4):522-530.
[3] ESAPOUR M, HOSSEINI M J, RANJBAR A A, et al.Phase change in multi-tube heat exchangers[J]. Renewable energy, 2016, 85: 1017-1025.
[4] 陈黎, 胡芃, 章高伟. 不同结构组合式相变材料换热器性能分析[J]. 太阳能学报, 2021, 42(6): 177-183.
CHEN L, HU P, ZHANG G W.Performance analysis of heat storage exchanger with different structures of combined type phase change materials[J]. Acta energiae solaris sinica, 2021, 42(6):177-183.
[5] AGYENIM F, EAMES P, SMYTH M.A comparison of heat transfer enhancement in a medium temperature thermal energy storage heat exchanger using fins[J]. Solar energy, 2009, 83(9): 1509-1520.
[6] RAHIMI M, SEDIGHI K, GANJI D D, et al.Analysis of geometrical and operational parameters of PCM in a fin and tube heat exchanger[J]. International communications in heat and mass transfer, 2014, 53: 109-115.
[7] POURAKABAR A A, ALI RABIENATAJ D ARZI A. Enhancement of phase change rate of PCM in cylindrical thermal energy storage[J]. Applied thermal engineering, 2019, 150: 132-142.
[8] TAO Y B, HE Y L.Numerical study on thermal energy storage performance of phase change material under non-steady-state inlet boundary[J]. Applied energy, 2011, 88(11): 4172-4179.
[9] LI Z, YU X L, WANG L, et al.Effects of fluctuating thermal sources on a shell-and-tube latent thermal energy storage during charging process[J]. Energy, 2020, 199: 117400.
[10] LI Z, LU Y J, HUANG R, et al.Parametric study on melting process of a shell-and-tube latent thermal energy storage under fluctuating thermal conditions[J]. Applied thermal engineering, 2020, 180: 115898.
[11] VIRK A S, PARK C.Enhancement of thermal performance of latent thermal energy storage systems using periodically reciprocating flows[J]. Applied thermal engineering, 2022, 204: 117961.
[12] NG K W, GONG Z X, MUJUMDAR A S.Heat transfer in free convection-dominated melting of a phase change material in a horizontal annulus[J]. International communications in heat & mass transfer, 1998, 25(5):631-640.
[13] DING B, FENG W C, FANG J, et al.How natural convection affect cooling performance of PCM heat sink[J]. International journal of heat and mass transfer, 2022, 184: 122272.
[14] YU X L, CHANG J W, HUANG R, et al.Sensitivity analysis of thermophysical properties on PCM selection under steady and fluctuating heat sources: a comparative study[J]. Applied thermal engineering, 2021, 186: 116527.
[15] PAHAMLI Y, HOSSEINI M J, RANJRAB A A, et al.Analysis of the effect of eccentricity and operational parameters in PCM-filled single-pass shell and tube heat exchangers[J]. Renewable energy, 2016, 97: 344-357.
[16] SEDDEGH S, WANG X L, HENDERSON A D.Numerical investigation of heat transfer mechanism in a vertical shell and tube latent heat energy storage system[J]. Applied thermal engineering, 2015, 87: 698-706.
[17] 刘伟毅. 管壳式相变储热装置结构协同优化的数值模拟研究[D]. 昆明: 昆明理工大学, 2022.
LIU W Y.Numerical simulation study on structural collaborative optimization of shell-and-tube phase change heat storage device[D]. Kunming: Kunming University of Science and Technology, 2022.
[18] WOODS J, MAHVI A, GOYAL A, et al.Rate capability and Ragone plots for phase change thermal energy storage[J]. Nature energy, 2021, 6: 295-302.
基金
云南省基础研究计划(202301AS07); 云南省“万人计划/青年拔尖人才”项目(YNWR-QNBJ-2018-162)