高量测丢包率下基于共享模糊等价关系的配电网状态感知

黄蔓云, 马一达, 孙国强, 卫志农

太阳能学报 ›› 2024, Vol. 45 ›› Issue (3) : 436-445.

PDF(2615 KB)
欢迎访问《太阳能学报》官方网站,今天是
PDF(2615 KB)
太阳能学报 ›› 2024, Vol. 45 ›› Issue (3) : 436-445. DOI: 10.19912/j.0254-0096.tynxb.2023-0799

高量测丢包率下基于共享模糊等价关系的配电网状态感知

  • 黄蔓云, 马一达, 孙国强, 卫志农
作者信息 +

STATE AWARENESS BASED ON SHARED FUZZY EQUIVALENCE RELATIONS FOR DISTRIBUTION SYSTEMS UNDER HIGH PACKET LOSS RATES

  • Huang Manyun, Ma Yida, Sun Guoqiang, Wei Zhinong
Author information +
文章历史 +

摘要

配电网分布式新能源渗透率的不断增加,对实时监测的要求不断提高,大量量测数据在集中传输过程中常常出现延迟、丢包等现象导致配电网状态感知精度降低甚至不可观测。针对上述问题,提出基于共享模糊等价关系的状态感知方法。首先,将采集得到的多时间断面历史量测数据集作为源数据集,实时采集得到的高量测丢包率下的数据作为目标数据集。利用三角形隶属度函数分别将两组数据集写成模糊集的形式。然后采用一种向量间距离度量方法,分别计算得到两组模糊集的模糊等价关系矩阵。在此基础上,采用共享模糊等价关系的聚类方法,将知识从源数据集转移到目标数据集,减小两组数据集特征分布之间的差异。最后,利用深度神经网络对知识迁移后低维特征空间中高量测丢包率对应的数据进行标记,得到配电网实时状态。通过对IEEE标准算例和某实际地市公司配电网算例进行仿真测试,结果表明所提出的基于共享模糊等价关系的配电网状态估计方法能在高量测丢包率下获得准确的配电网实时运行状态,实现不同量测数据缺失程度下的配电网实时监测。

Abstract

The increasing penetration rate of distributed new energy in the distribution network and the increasing demand for real-time monitoring often result in delays, packet loss, and other phenomena in the centralized transmission of a large amount of measurement data, leading to a decrease in the accuracy of distribution network state perception and even unobservability. In response to the above issues, a state awareness method based on shared fuzzy equivalence relationships is proposes. Firstly, the collected historical measurement dataset of multi-time sections is used as the source dataset, and the real-time collected data with high measurement packet loss rate is used as the target dataset. Write two sets of datasets in the form of fuzzy sets using triangular membership functions. Then, a distance measurement method between vectors is used to calculate the fuzzy equivalence relationship matrices of two sets of fuzzy sets. On this basis, a clustering method using shared fuzzy equivalence relationships is adopted to transfer knowledge from the source dataset to the target dataset, reducing the difference in feature distribution between the two sets of datasets. Finally, a deep neural network is used to label the data corresponding to the high measurement packet loss rate in the low dimensional feature space after knowledge transfer, and the real-time status of the distribution network is obtained. Through simulation tests on IEEE standard examples and distribution network examples of a certain actual city company, the results show that the proposed distribution network state estimation method based on shared fuzzy equivalence relationship can obtain accurate real-time operation status of the distribution network under high measurement packet loss rates, and achieve real-time monitoring of the distribution network under different levels of measurement data loss.

关键词

新能源 / 状态估计 / 丢包 / 深度学习 / 共享模糊等价关系 / 聚类 / 知识迁移

Key words

new energy / state estimation / packet loss / deep learning / sharing fuzzy equivalence relation / clustering / knowledge transfer

引用本文

导出引用
黄蔓云, 马一达, 孙国强, 卫志农. 高量测丢包率下基于共享模糊等价关系的配电网状态感知[J]. 太阳能学报. 2024, 45(3): 436-445 https://doi.org/10.19912/j.0254-0096.tynxb.2023-0799
Huang Manyun, Ma Yida, Sun Guoqiang, Wei Zhinong. STATE AWARENESS BASED ON SHARED FUZZY EQUIVALENCE RELATIONS FOR DISTRIBUTION SYSTEMS UNDER HIGH PACKET LOSS RATES[J]. Acta Energiae Solaris Sinica. 2024, 45(3): 436-445 https://doi.org/10.19912/j.0254-0096.tynxb.2023-0799
中图分类号: V242.3   

参考文献

[1] 邓佃毅, 栗文义, 楚冰清, 等. 基于可靠性约束的风-光-储微网容量优化配置对配电网可靠性影响分析[J]. 太阳能学报, 2018, 39(9): 2439-2445.
DENG D Y, LI W Y, CHU B Q, et al.Reliability analysis of wind-photovoltaic-battery microgrids optimization configuration based on reliability constraints for distribution system[J]. Acta energiae solaris sinica, 2018, 39(9): 2439-2445.
[2] 于尔铿. 电力系统状态估计[M]. 北京: 水利电力出版社, 1985.
YU E K.Power system state estimation[M]. Beijing: China Water & Power Press, 1985.
[3] 黄哲洙, 金鹏, 王洋, 等. 含光伏发电的配电网分布式状态估计方法[J]. 太阳能学报, 2021, 42(7): 167-178.
HUANG Z Z, JIN P, WANG Y, et al.Distributed state estimation for distribution network with photovoltaic power generation[J]. Acta energiae solaris sinica, 2021, 42(7): 167-178.
[4] 米阳, 李战强, 刘红业, 等. 考虑通信故障的直流微电网多储能荷电状态动态均衡策略[J]. 电网技术, 2018, 42(10): 3282-3290.
MI Y, LI Z Q, LIU H Y, et al.State-of-charge dynamic balancing strategy for multi energy storage of DC micro-grid considering communication faults[J]. Power system technology, 2018, 42(10): 3282-3290.
[5] 姚卓磊, 黄文焘, 余墨多, 等. 智能配电网电力-通信灾害故障动态协调恢复方法[J]. 电力系统自动化, 2022, 46(19): 87-94.
YAO Z L, HUANG W T, YU M D, et al.Dynamic coordination recovery method for power-communication disaster fault in smart distribution network[J]. Automation of electric power systems, 2022, 46(19): 87-94.
[6] 刘文霞, 马铁, 杨梦瑶, 等. 严重通信故障下主动配电系统分布式电源应急运行策略优化[J]. 中国电机工程学报, 2020, 40(3): 754-765.
LIU W X, MA T, YANG M Y, et al.Contingency optimization strategy for distributed generations of active distribution network under serious communication failure[J]. Proceedings of the CSEE, 2020, 40(3): 754-765.
[7] 吴在军, 徐俊俊, 余星火, 等. 主动配电网状态估计技术评述[J]. 电力系统自动化, 2017, 41(13): 182-191.
WU Z J, XU J J, YU X H, et al.Review on state estimation technique of active distribution network[J]. Automation of electric power systems, 2017, 41(13): 182-191.
[8] 孔祥玉, 张烜墉, 王成山, 等. 复杂形态下的配电网自适应自趋优状态估计方法[J]. 中国电机工程学报, 2021, 41(10): 3339-3348, 3660.
KONG X Y, ZHANG X Y, WANG C S, et al.Adaptive self-optimizing state estimation method of distribution network in complex condition[J]. Proceedings of the CSEE, 2021, 41(10): 3339-3348, 3660.
[9] 葛维春, 蔡亦浓, 李江, 等. 基于多分支电流混合量测的配电网三相状态估计[J]. 电力系统保护与控制, 2020, 48(9): 1-10.
GE W C, CAI Y N, LI J, et al.Three-phase state estimation of a distribution network based on multi-branch current mixing measurement[J]. Power system protection and control, 2020, 48(9): 1-10.
[10] 黄蔓云, 孙国强, 卫志农, 等. 基于脉冲神经网络伪量测建模的配电网三相状态估计[J]. 电力系统自动化, 2016, 40(16): 38-43, 82.
HUANG M Y, SUN G Q, WEI Z N, et al.Three-phase state estimation in distribution systems based on pseudo measurement modeling using spiking neural network[J]. Automation of electric power systems, 2016, 40(16): 38-43, 82.
[11] 孙国强, 钱嫱, 陈亮, 等. 基于深度信念网络伪量测建模的配电网状态估计[J]. 电力自动化设备, 2018, 38(12): 94-99.
SUN G Q, QIAN Q, CHEN L, et al.State estimation of distribution system based on pesudo measurement modeling using deep belief network[J]. Electric power automation equipment, 2018, 38(12): 94-99.
[12] LEJLA P, AZRA P, BALINT H, et al.The application of artificial neural networks to pseudo measurement modeling in distribution networks[C]//2021 IEEE Madrid Power Tech., Madrid, Spain, 2021: 1-6.
[13] MESTAV K R, LUENGO-ROZAS J, TONG L.Bayesian state estimation for unobservable distribution systems via deep learning[J]. IEEE transactions on power systems, 2019, 34(6): 4910-4920.
[14] 俞文帅, 张晓华, 卫志农, 等. 基于深度神经网络的电力系统快速状态估计[J]. 电网技术, 2021, 45(7): 2551-2561.
YU W S, ZHANG X H, WEI Z N, et al.Fast state estimation for power system based on deep neural network[J]. Power system technology, 2021, 45(7): 2551-2561.
[15] WENG Y, NEGI R, FALOUTSOS C, et al.Robust data-driven state estimation for smart grid[J]. IEEE transactions on smart grid, 2017, 8(4): 1956-1967.
[16] ELSAYED A A E, MOHAMED M A, ABDELRAHEEM M, et al. Optimal µPMU placement based on hybrid current channels selection for distribution grids[J]. IEEE transactions on industry applications, 2020, 56(6): 6871-6881.
[17] 孔祥玉, 王玉婷, 袁枭枭, 等. 基于定制遗传算法考虑配电网多种拓扑可观性的PMU优化配置[J]. 电力自动化设备, 2020, 40(1): 66-72.
KONG X Y, WANG Y T, YUAN X X, et al.Optimal configuration of PMU based on customized genetic algorithm and considering observability of multiple topologies of distribution network[J]. Electric power automation equipment, 2020, 40(1): 66-72.
[18] 孙亮, 杨远, 张程, 等. 分布式电源接入配电网的配电终端优化配置[J]. 太阳能学报, 2021, 42(5): 120-125.
SUN L, YANG Y, ZHANG C, et al.Distribution terminal optimal design for distributed generation accessing distribution network[J]. Acta energiae solaris sinica, 2021, 42(5): 120-125.
[19] LIU F, LU J, ZHANG G Q.Unsupervised heterogeneous domain adaptation via shared fuzzy equivalence relations[J]. IEEE transactions on fuzzy systems, 2018, 26(6): 3555-3568.
[20] 徐航, 鞠力, 董树锋, 等. 提高配电网状态估计精度的智能配电单元优化布点方法[J]. 电网技术, 2018, 42(4): 1210-1216.
XU H, JU L, DONG S F, et al.Optimization of intelligent distribution unit placement to improve accuracy of distribution network state estimation[J]. Power system technology, 2018, 42(4): 1210-1216.
[21] 刘羽霄, 张宁, 康重庆. 数据驱动的电力网络分析与优化研究综述[J]. 电力系统自动化, 2018, 42(6): 157-167.
LIU Y X, ZHANG N, KANG C Q.A review on data-driven analysis and optimization of power grid[J]. Automation of electric power systems, 2018, 42(6): 157-167.
[22] 蔡昌春, 息梦蕊, 刘昊林, 等. 基于数据驱动和多场景技术的微电网并网等效建模[J]. 电力自动化设备, 2022, 42(9): 64-69.
CAI C C, XI M R, LIU H L, et al.Grid-connected equivalent modeling of microgrids based on data-driven and multi-scenario technologies[J]. Electric power automation equipment, 2022, 42(9): 64-69.
[23] 黄蔓云, 卫志农, 孙国强, 等. 数据挖掘在配电网态势感知中的应用:模型、算法和挑战[J]. 中国电机工程学报, 2022, 42(18): 6588-6599.
HUANG M Y, WEI Z N, SUN G Q, et al.Review of distribution system situation awareness based on data mining: modeling, algorithms and challenges[J]. Proceedings of the CSEE, 2022, 42(18): 6588-6599.

基金

国家自然科学基金青年项目(52207090); 中央高校基本科研业务费专项资金(B220202003)

PDF(2615 KB)

Accesses

Citation

Detail

段落导航
相关文章

/