基于多模式增量更新的短期光伏功率预测方法

孙玉玺, 刘寅韬, 耿光超, 江全元

太阳能学报 ›› 2024, Vol. 45 ›› Issue (9) : 386-393.

PDF(1556 KB)
欢迎访问《太阳能学报》官方网站,今天是
PDF(1556 KB)
太阳能学报 ›› 2024, Vol. 45 ›› Issue (9) : 386-393. DOI: 10.19912/j.0254-0096.tynxb.2023-0807

基于多模式增量更新的短期光伏功率预测方法

  • 孙玉玺1, 刘寅韬2, 耿光超1, 江全元1
作者信息 +

SHORT-TERM PHOTOVOLTAIC POWER FORECASTING METHOD BASED ON MULTI-MODE INCREMENTAL UPDATE

  • Sun Yuxi1, Liu Yintao2, Geng Guangchao1, Jiang Quanyuan1
Author information +
文章历史 +

摘要

针对传统短期预测模型在特殊天气下准确率低以及未考虑光伏运行环境后续变化的问题,提出一种基于多模式增量更新的短期光伏功率预测方法。在分析气象特征的基础上,根据历史情况预测广义天气类型,在日前根据预测天气类型制定相应的训练函数与数据增强方法,最后基于参数冻结技术对模型进行增量更新,提升了模型对特殊天气的刻画能力以及对后续环境的适应能力。在真实的光伏数据集上进行实验,结果证明该更新方法能有效提高预测准确性。

Abstract

To address the issues of low accuracy in traditional neural network-based forecasting models under specific weather conditions and the lack of consideration for environmental changes, a short-term photovoltaic (PV) power forecasting method based on multi-mode incremental update is proposed. By analyzing weather features, generalized weather types are forecasted based on historical data. Then, corresponding training methods and data enhancement techniques are developed according to the forecasting weather types for the following day. Finally, by using parameter freezing technology, the model is incrementally updated so that its ability to depict special weather and adapt to subsequent environments is enhanced. Experiments on a real-world PV dataset demonstrate that the proposed method effectively improves forecasting accuracy.

关键词

光伏发电 / 功率预测 / 神经网络 / 天气分型 / 增量更新

Key words

photovoltaic power generation / power forecasting / neural network / weather classification / incremental update

引用本文

导出引用
孙玉玺, 刘寅韬, 耿光超, 江全元. 基于多模式增量更新的短期光伏功率预测方法[J]. 太阳能学报. 2024, 45(9): 386-393 https://doi.org/10.19912/j.0254-0096.tynxb.2023-0807
Sun Yuxi, Liu Yintao, Geng Guangchao, Jiang Quanyuan. SHORT-TERM PHOTOVOLTAIC POWER FORECASTING METHOD BASED ON MULTI-MODE INCREMENTAL UPDATE[J]. Acta Energiae Solaris Sinica. 2024, 45(9): 386-393 https://doi.org/10.19912/j.0254-0096.tynxb.2023-0807
中图分类号: TM615   

参考文献

[1] 赵争鸣, 雷一, 贺凡波, 等. 大容量并网光伏电站技术综述[J]. 电力系统自动化, 2011, 35(12): 101-107.
ZHAO Z M, LEI Y, HE F B, et al.Overview of large-scale grid-connected photovoltaic power plants[J]. Automation of electric power systems, 2011, 35(12): 101-107.
[2] 龚莺飞, 鲁宗相, 乔颖, 等. 光伏功率预测技术[J]. 电力系统自动化, 2016, 40(4): 140-151.
GONG Y F, LU Z X, QIAO Y, et al.An overview of photovoltaic energy system output forecasting technology[J]. Automation of electric power systems, 2016, 40(4): 140-151.
[3] BAŞARAN K, BOZYIĞIT F, SIANO P, et al. Systematic literature review of photovoltaic output power forecasting[J]. IET renewable power generation, 2020, 14(19): 3961-3973.
[4] KOSTER D, MINETTE F, BRAUN C, et al.Short-term and regionalized photovoltaic power forecasting, enhanced by reference systems, on the example of Luxembourg[J]. Renewable energy, 2019, 132: 455-470.
[5] 丁明, 徐宁舟. 基于马尔可夫链的光伏发电系统输出功率短期预测方法[J]. 电网技术, 2011, 35(1): 152-157.
DING M, XU N Z.A method to forecast short-term output power of photovoltaic generation system based on Markov chain[J]. Power system technology, 2011, 35(1): 152-157.
[6] AMEUR A, BERRADA A, LOUDIYI K, et al.Forecast modeling and performance assessment of solar PV systems[J]. Journal of cleaner production, 2020, 267: 122167.
[7] 李英姿, 贺琳, 牛进苍. 基于马尔可夫链的光伏并网发电量预测[J]. 太阳能学报, 2014, 35(4): 611-616.
LI Y Z, HE L, NIU J C.Forecasting power generation of grid-connected solar PV system based on Markov chain[J]. Acta energiae solaris sinica, 2014, 35(4): 611-616.
[8] SHI J E, LEE W J, LIU Y Q, et al.Forecasting power output of photovoltaic systems based on weather classification and support vector machines[J]. IEEE transactions on industry applications, 2012, 48(3): 1064-1069.
[9] 丁明, 王磊, 毕锐. 基于改进BP神经网络的光伏发电系统输出功率短期预测模型[J]. 电力系统保护与控制, 2012, 40(11): 93-99, 148.
DING M, WANG L, BI R.A short-term prediction model to forecast output power of photovoltaic system based on improved BP neural network[J]. Power system protection and control, 2012, 40(11): 93-99, 148.
[10] 刘国海, 孙文卿, 吴振飞, 等. 基于Attention-GRU的短期光伏发电功率预测[J]. 太阳能学报, 2022, 43(2): 226-232.
LIU G H, SUN W Q, WU Z F, et al.Short-term photovoltaic power forecasting based on Attention-GRU model[J]. Acta energiae solaris sinica, 2022, 43(2): 226-232.
[11] HUANG C, WANG L, YEUNG R S C, et al. A prediction model-guided jaya algorithm for the PV system maximum power point tracking[J]. IEEE transactions on sustainable energy, 2018, 9(1): 45-55.
[12] WANG H Z, YI H Y, PENG J C, et al.Deterministic and probabilistic forecasting of photovoltaic power based on deep convolutional neural network[J]. Energy conversion and management, 2017, 153: 409-422.
[13] ABDEL-NASSER M, MAHMOUD K.Accurate photovoltaic power forecasting models using deep LSTM-RNN[J]. Neural computing and applications, 2019, 31(7): 2727-2740.
[14] OSPINA J, NEWAZ A, FARUQUE M O.Forecasting of PV plant output using hybrid wavelet-based LSTM-DNN structure model[J]. IET renewable power generation, 2019, 13(7): 1087-1095.
[15] 王福忠, 王帅峰, 张丽. 基于VMD-LSTM与误差补偿的光伏发电超短期功率预测[J]. 太阳能学报, 2022, 43(8): 96-103.
WANG F Z, WANG S F, ZHANG L.Ultra short term power prediction of photovoltaic power generation based on VMD-LSTM and error compensation[J]. Acta energiae solaris sinica, 2022, 43(8): 96-103.
[16] WANG K J, QI X X, LIU H D.A comparison of day-ahead photovoltaic power forecasting models based on deep learning neural network[J]. Applied energy, 2019, 251: 113315.
[17] 叶林, 裴铭, 路朋, 等. 基于天气分型的短期光伏功率组合预测方法[J]. 电力系统自动化, 2021, 45(1): 44-54.
YE L, PEI M, LU P, et al.Combination forecasting method of short-term photovoltaic power based on weather classification[J]. Automation of electric power systems, 2021, 45(1): 44-54.
[18] 杜炜. 覆灰条件下光伏组件性能及功率衰减研究[D]. 重庆: 重庆大学, 2017.
DU W.Study on the pollutant impact on performance and power degradation of photovoltaic modules[D]. Chongqing: Chongqing University, 2017.
[19] 曲宏伟, 王靖雯. 积灰对光伏板输出特性影响理论和试验研究[J]. 太阳能学报, 2018, 39(8): 2335-2340.
QU H W, WANG J W.Theory and experimental research of effect of dust deposition on output characteristics of PV module[J]. Acta energiae solaris sinica, 2018, 39(8): 2335-2340.
[20] 袁晓玲, 施俊华, 徐杰彦. 计及天气类型指数的光伏发电短期出力预测[J]. 中国电机工程学报, 2013, 33(34): 57-64.
YUAN X L, SHI J H, XU J Y.Short-term power forecasting for photovoltaic generation considering weather type index[J]. Proceedings of the CSEE, 2013, 33(34): 57-64.
[21] 王飞, 米增强, 甄钊, 等. 基于天气状态模式识别的光伏电站发电功率分类预测方法[J]. 中国电机工程学报, 2013, 33(34): 75-82.
WANG F, MI Z Q, ZHEN Z, et al.A classified forecasting approach of power generation for photovoltaic plants based on weather condition pattern recognition[J]. Proceedings of the CSEE, 2013, 33(34): 75-82.
[22] ZHANG T F, MA F M, PENG C, et al.A very-short-term online PV power prediction model based on RAN with secondary dynamic adjustment[J]. IEEE transactions on artificial intelligence, 2023, 4(5): 1214-1224.
[23] 傅美平, 马红伟, 毛建容. 基于相似日和最小二乘支持向量机的光伏发电短期预测[J]. 电力系统保护与控制, 2012, 40(16): 65-69.
FU M P, MA H W, MAO J R.Short-term photovoltaic power forecasting based on similar days and least square support vector machine[J]. Power system protection and control, 2012, 40(16): 65-69.
[24] YOSINSKI J, CLUNE J, BENGIO Y, et al.How transferable are features in deep neural networks?[C]//Proceedings of the 27th International Conference on Neural Information Processing Systems-Volume 2. Montreal, Canada, 2014: 3320-3328.
[25] 王晓兰, 葛鹏江. 基于相似日和径向基函数神经网络的光伏阵列输出功率预测[J]. 电力自动化设备, 2013, 33(1): 100-103, 109.
WANG X L, GE P J.PV array output power forecasting based on similar day and RBFNN[J]. Electric power automation equipment, 2013, 33(1): 100-103, 109.

基金

国家重点研发计划(2022YFB2403000)

PDF(1556 KB)

Accesses

Citation

Detail

段落导航
相关文章

/