电解水制氢技术的应用可更好地促进可再生能源的消纳,提升含高比例可再生能源的电力系统调节灵活性,碱性电解槽因成本低、结构简单、技术成熟等特征广泛应用于工业电解领域。然而,由于其低载工况电解效率较低,导致其难以全范围跟踪波动性可再生能源。针对这一问题,该文首先从电解槽激励电场分布的角度揭示高低载效率差异机理,并提出基于激励电场重塑的最优功率脉宽调制(OP-PWM)策略,然后设计适用于脉冲电解的双级式变流器,并对关键性控制参数进行分析。最后,通过搭建的光伏直驱电解制氢平台对所述理论进行验证。实验结果表明:相比于传统直流电解模式,OP-PWM策略可显著提升低载效率,提升幅度达到1.8倍。若将最小电解效率约束条件定为48%,则OP-PWM控制策略可将电解槽运行范围由28%~100%额定功率扩展至20%~100%额定功率。
Abstract
The application of hydrogen production technology through water electrolysis can promote the consumption of renewable energy and enhance the flexibility of power system regulation, especially in systems with a high proportion of renewable energy. Alkaline water electrolyzers (AWEs) are widely used in the field of industrial electrolysis due to their low cost, simple structure, and mature technology. However, the low electrolysis efficiency of AWES under low load conditions makes it difficult to effectively utilize the fluctuating renewable energy power over the wide range. To address this issue, this paper firstly reveals the mechanism behind the difference in high- and low-load efficiency from the perspective of the distribution of the exciting electric field inside the electrolytic cells. An optimal power pulse-width modulation (OP-PWM) strategy is proposed to reshape the internal electric field distribution under low load conditions. A two-stage converter for pulse electrolysis has been designed. And key control parameters are analyzed. Moreover, the proposed theory is validated through an experimental platform for photovoltaic direct-drive electrolytic hydrogen production. The experimental results show that the OP-PWM strategy can significantly improve the low-load efficiency compared to the dc electrolysis mode, with an increase of 1.8 times. Under the constraint of achieving an efficiency greater than 48%, the system operation has been improved from 28%-100% to 20%-100% of rated.
关键词
光伏 /
电解槽 /
DC/DC变流器 /
制氢 /
效率 /
最优功率脉宽调制
Key words
photovoltaic /
electrolytic cells /
DC/DC converters /
hydrogen production /
efficiency /
optimal power pulse-width modulation
{{custom_sec.title}}
{{custom_sec.title}}
{{custom_sec.content}}
参考文献
[1] 张诚, 檀志恒, 晁怀颇. “双碳” 背景下数据中心氢能应用的可行性研究[J]. 太阳能学报, 2022, 43(6): 327-334.
ZHANG C, TAN Z H, CHAO H P.Feasibility study of hydrogen energy application on data center under\ “carbon peaking and neutralization\” background[J]. Acta energiae solaris sinica, 2022, 43(6): 327-334.
[2] DOZEIN M G, DE CORATO A M, MANCARELLA P. Virtual inertia response and frequency control ancillary services from hydrogen electrolyzers[J]. IEEE transactions on power systems, 2023, 38(3): 2447-2459.
[3] CHENG X, LIN J, LIU F, et al.A coordinated frequency regulation and bidding method for wind-electrolysis joint systems participating within ancillary services markets[J]. IEEE transactions on sustainable energy, 2023, 14(3): 1370-1384.
[4] 牛萌, 洪振鹏, 李蓓, 等. 考虑制氢效率提升的风电制氢系统优化控制策略[J]. 太阳能学报, 2023, 44(9): 366-376.
NIU M, HONG Z P, LI B, et al.Optimal control strategy of wind power to hydrogen system considering electrolyzer efficiency improvement[J]. Acta energiae solaris sinica, 2023, 44(9): 366-376.
[5] SWIEGERS G F, TERRETT R N L, TSEKOURAS G, et al. The prospects of developing a highly energy-efficient water electrolyser by eliminating or mitigating bubble effects[J]. Sustainable energy & fuels, 2021, 5(5): 1280-1310.
[6] YU Z Y, DUAN Y, FENG X Y, et al.Clean and affordable hydrogen fuel from alkaline water splitting: past, recent progress, and future prospects[J]. Advanced materials, 2021, 33(31): e2007100.
[7] NAGAI N.Existence of optimum space between electrodes on hydrogen production by water electrolysis[J]. International journal of hydrogen energy, 2003, 28(1): 35-41.
[8] PHILLIPS R, EDWARDS A, ROME B, et al.Minimising the ohmic resistance of an alkaline electrolysis cell through effective cell design[J]. International journal of hydrogen energy, 2017, 42(38): 23986-23994.
[9] ĐUKIĆ A, FIRAK M.Hydrogen production using alkaline electrolyzer and photovoltaic (PV) module[J]. International journal of hydrogen energy, 2011, 36(13): 7799-7806.
[10] LIN M Y, HSU W N, HOURNG L, et al.Effect of Lorentz force on hydrogen production in water electrolysis employing multielectrodes[J]. Journal of marine science and technology-taiwan, 2016, 24(3): 511-518.
[11] WANG M Y, WANG Z, GUO Z C.Water electrolysis enhanced by super gravity field for hydrogen production[J]. International journal of hydrogen energy, 2010, 35(8): 3198-3205.
[12] 胡骏, 梁书芹, 尹宏峰. Ni/CrN高效电催化剂的制备及其析氢催化性能[J]. 化学试剂, 2023, 45(5): 113-119.
HU J, LIANG S Q, YIN H F.Preparation of Ni/CrN high-efficiency electrocatalyst and its catalytic performance in hydrogen evolution reaction[J]. Chemical reagents, 2023, 45(5): 113-119.
[13] ULLEBERG O.Modeling of advanced alkaline electrolyzers: a system simulation approach[J]. International journal of hydrogen energy, 2003, 28(1): 21-33.
[14] FU Q X, DAILLY J, BRISSE A, et al.High-temperature CO2 and H2O electrolysis with an electrolyte-supported solid oxide cell[J]. ECS transactions, 2011, 35(1): 2949-2956.
[15] QI R M, GAO X P, LIN J, et al.Pressure control strategy to extend the loading range of an alkaline electrolysis system[J]. International jounal of hydrogen energy, 2021, 46(73): 35997-36011.
[16] SPECKMANN F W, BINTZ S, BIRKE K P.Influence of rectifiers on the energy demand and gas quality of alkaline electrolysis systems in dynamic operation[J]. Applied energy, 2019, 250: 855-863.
[17] YODWONG B, GUILBERT D, PHATTANASAK M, et al.AC-DC converters for electrolyzer applications: state of the art and future challenges[J]. Electronics, 2020, 9(6): 912.
[18] MENG X, CHEN M L, HE M Z, et al.A novel high power hybrid rectifier with low cost and high grid current quality for improved efficiency of electrolytic hydrogen production[J]. IEEE transactions on power electronics, 2022, 37(4): 3763-3768.
[19] RUUSKANEN V, KOPONEN J, KOSONEN A, et al.Power quality and reactive power of water electrolyzers supplied with thyristor converters[J]. Journal of power sources, 2020, 459: 228075.
[20] GUILBERT D, SORBERA D, VITALE G.A stacked interleaved DC-DC buck converter for proton exchange membrane electrolyzer applications: design and experimental validation[J]. International journal of hydrogen energy, 2020, 45(1): 64-79.
[21] 张理, 韩民晓, 范溢文. 多相堆叠交错并联制氢变换器控制策略与特性分析[J]. 电工技术学报, 2023, 38(2): 485-495.
ZHANG L, HAN M X, FAN Y W.Control strategy and characteristic analysis of multi-phase stacked interleaved buck converter for hydrogen production[J]. Transactions of China Electrotechnical Society, 2023, 38(2): 485-495.
[22] 周京华, 孟祥飞, 陈亚爱, 等. 基于新能源发电的电解水制氢直流电源研究[J]. 太阳能学报, 2022, 43(6): 389-397.
ZHOU J H, MENG X F, CHEN Y A, et al.Research on DC power supply for hydrogen production from electrolytic water based on new energy generation[J]. Acta energiae solaris sinica, 2022, 43(6): 389-397.
[23] URSÚA A, SANCHIS P. Static-dynamic modelling of the electrical behaviour of a commercial advanced alkaline water electrolyser[J]. International journal of hydrogen energy, 2012, 37(24): 18598-18614.
[24] URSÚA A, MARROYO L, GUBÍA E, et al. Influence of the power supply on the energy efficiency of an alkaline water electrolyser[J]. International journal of hydrogen energy, 2009, 34(8): 3221-3233.
[25] HERNÁNDEZ-GÓMEZ Á, RAMIREZ V, GUILBERT D, et al. Development of an adaptive static-dynamic electrical model based on input electrical energy for PEM water electrolysis[J]. International journal of hydrogen energy, 2020, 45(38): 18817-18830.
[26] 李红岩, 王磊, 安平娟, 等. 基于改进黏菌算法的局部遮阴下光伏MPPT研究[J]. 太阳能学报, 2023, 44(10): 129-134.
LI H Y, WANG L, AN P J, et al.Study on photovoltaic mppt under local shade based on improved slime mold algorithm[J]. Acta energiae solaris sinica, 2023, 44(10): 129-134.
基金
国家电网有限公司总部科技项目(5108-202218280A-2-442-XG)