一种考虑光伏发电与峰谷电价的空气源热泵最优装机容量计算方法

张晓明, 张昊天, 王强, 马璎涵, 赵诗雨

太阳能学报 ›› 2024, Vol. 45 ›› Issue (9) : 228-236.

PDF(1457 KB)
欢迎访问《太阳能学报》官方网站,今天是
PDF(1457 KB)
太阳能学报 ›› 2024, Vol. 45 ›› Issue (9) : 228-236. DOI: 10.19912/j.0254-0096.tynxb.2023-0823

一种考虑光伏发电与峰谷电价的空气源热泵最优装机容量计算方法

  • 张晓明, 张昊天, 王强, 马璎涵, 赵诗雨
作者信息 +

A METHOD FOR CALCULATING OPTIMAL INSTALLED CAPACITY OF AIR SOURCE HEAT PUMP COUPLED ELECTRIC BOILER

  • Zhang Xiaoming, Zhang Haotian, Wang Qiang, Ma Yinghan, Zhao Shiyu
Author information +
文章历史 +

摘要

针对目前光伏发电及峰谷电价的用电形式下,空气源热泵耦合电锅炉供热系统经济性装机容量选择困难的有关问题,提出一种综合考虑光伏发电与峰谷电价影响的设备装机容量计算方法,使用空气源热泵最优不保证天数(OGD)作为选型参考值,通过TRNSYS建立系统模型开发新模块使其具有自动寻优能力。在使用测试数据验证模型准确性后,基于该模型计算5座代表性城市OGD推荐值。结果表明:OGD值受建筑负荷大小与光伏装机容量双重影响。采用OGD均值作为推荐值时,单一建筑OGD与均值分别对应的费用年值最大误差为8.17%,可保证计算准确性;5类气候分区内各城市费用年值变化规律基本一致,OGD值随气候变暖各气候分区间平均下降46.83%;其中北京市最大OGD值仅为5,说明在寒冷B区城市此类系统添加光伏发电后,可不设置辅助热源。

Abstract

With the promotion of the “self-generation” mode in photovoltaic power generation and the introduction of peak and valley tariff policies, the issue of selecting the economically efficient installed capacity for air source heat pump coupled with electric boiler heating system has become more prominent. In light of this, we propose a method for calculating the installed capacity that takes into account the impacts of PV power generation and peak and off-peak tariffs. We use the optimal unguaranteed days (OGD) of the air source heat pump as the reference value for selection. A new module has been developed by Trnsys to create a system model with automatic optimization capabilities. After verifying the accuracy of the model using test data, we calculate the recommended OGD values for five representative cities based on the model. The results show that the OGD value is influenced by both the building load size and the installed PV capacity. When the average OGD value is used as the recommended value, the maximum error in the annual cost value of a single building corresponding to the average value of OGD is 8.17%. This ensures the accuracy of the calculation. On average, the OGD value decreases by 46.83% with warming in each climate subzone. The maximum OGD value in Beijing is only 5. This suggests that the addition of photovoltaic power generation to such systems in cold B zone cities can be considered without auxiliary heat sources.

关键词

空气源热泵 / 仿真模型 / 光伏发电 / 最优装机容量 / TRNSYS

Key words

air source heat pumps (ASHP) / simulation model / photovoltaic power generation / optimal installed capacity / TRNSYS

引用本文

导出引用
张晓明, 张昊天, 王强, 马璎涵, 赵诗雨. 一种考虑光伏发电与峰谷电价的空气源热泵最优装机容量计算方法[J]. 太阳能学报. 2024, 45(9): 228-236 https://doi.org/10.19912/j.0254-0096.tynxb.2023-0823
Zhang Xiaoming, Zhang Haotian, Wang Qiang, Ma Yinghan, Zhao Shiyu. A METHOD FOR CALCULATING OPTIMAL INSTALLED CAPACITY OF AIR SOURCE HEAT PUMP COUPLED ELECTRIC BOILER[J]. Acta Energiae Solaris Sinica. 2024, 45(9): 228-236 https://doi.org/10.19912/j.0254-0096.tynxb.2023-0823
中图分类号: TU83   

参考文献

[1] RAI A, NUNN O.On the impact of increasing penetration of variable renewables on electricity spot price extremes in Australia[J]. Economic analysis and policy, 2020, 67: 67-86.
[2] 郭晓利, 赵莹, 曲楠, 等. 基于满意度的户用型微电网多属性需求响应策略[J]. 太阳能学报, 2021, 42(7): 21-27.
GUO X L, ZHAO Y, QU N, et al.Multi-attribute demand response strategy of household microgrid based on satisfaction[J]. Acta energiae solaris sinica, 2021, 42(7): 21-27.
[3] 孙健, 吴可欣, 王寅武, 等. 夏热冬冷地区新型高温空气源热泵实验研究[J]. 太阳能学报, 2023, 44(6): 186-192.
SUN J, WU K X, WANG Y W, et al.Experimental study on a new high temperature air source heat pump in hot summer and cold winter areas[J]. Acta energiae solaris sinica, 2023, 44(6): 186-192.
[4] KLEIN K, HUCHTEMANN K, MÜLLER D. Numerical study on hybrid heat pump systems in existing buildings[J]. Energy and buildings, 2014, 69: 193-201.
[5] HUANG J R, ZOU T H, LI T, et al.Study on discharging characteristics of solid heat storage bricks: experiment and simulation[J]. Energy reports, 2023, 9: 1948-1962.
[6] DI PERNA C, MAGRI G, GIULIANI G, et al.Experimental assessment and dynamic analysis of a hybrid generator composed of an air source heat pump coupled with a condensing gas boiler in a residential building[J]. Applied thermal engineering, 2015, 76: 86-97.
[7] BAGARELLA G, LAZZARIN R M, LAMANNA B.Cycling losses in refrigeration equipment: an experimental evaluation[J]. International journal of refrigeration, 2013, 36(8): 2111-2118.
[8] ZHANG W L, KLEMEŠ J J, KIM J K.Design and optimisation of dual-mode heat pump systems using natural fluids[J]. Applied thermal engineering, 2012, 43: 109-117.
[9] LI Z Y, WEI W Z, WANG W, et al.A method for sizing air source heat pump considering the joint effect of outdoor air temperature and relative humidity[J]. Journal of building engineering, 2023, 65: 105815.
[10] NIU J D, TIAN Z, LU Y K, et al.A robust optimization model for designing the building cooling source under cooling load uncertainty[J]. Applied energy, 2019, 241: 390-403.
[11] LI H X, WANG S W, XIAO F.Probabilistic optimal design and on-site adaptive commissioning of building air-conditioning systems concerning uncertainties[J]. Energy procedia, 2019, 158: 2725-2730.
[12] T/CECS 564—2018, 空气源热泵供暖工程技术规程[S].
T/CECS 564—2018,Technical specification for air source heat pump heating engineering[S].
[13] 杨少刚. 基于TRNSYS地理管地源热泵变流量系统仿真研究[D]. 济南: 山东建筑大学, 2016.
YANG S G.Simulation study on variable flow system of ground source heat pump based on TRNSYS geographical pipe[D]. Ji'nan: Shandong Jianzhu University, 2016.

PDF(1457 KB)

Accesses

Citation

Detail

段落导航
相关文章

/